Symbol Description Uses
kGrd Ground level index (2-dim) 51



File Line number Procedure Code
./pkg/aim_v23/aim_dyn2aim.F 11 AIM_DYN2AIM
     O           kGrd,
./pkg/aim_v23/aim_dyn2aim.F 252 AIM_DYN2AIM
        k = kGrd(I2)
./pkg/aim_v23/aim_dyn2aim.F 57 AIM_DYN2AIM
      INTEGER kGrd(NGP)
./pkg/aim_v23/aim_dyn2aim.F 88 AIM_DYN2AIM
        kGrd(I2) = (Nr+1) - kSurfC(i,j,bi,bj)
./pkg/aim_v23/phy_convmf.F 104 CONVMF
        ITOP(J)  =kGrd(J)
./pkg/aim_v23/phy_convmf.F 145 CONVMF
       Ktmp = kGrd(J)
./pkg/aim_v23/phy_convmf.F 173 CONVMF
       Ktmp = kGrd(J)
./pkg/aim_v23/phy_convmf.F 189 CONVMF
       Ktmp = kGrd(J)
./pkg/aim_v23/phy_convmf.F 201 CONVMF
       Ktmp = kGrd(J)
./pkg/aim_v23/phy_convmf.F 54 CONVMF
      INTEGER  kGrd(NGP)
./pkg/aim_v23/phy_convmf.F 84 CONVMF
       Ktmp = kGrd(J)
./pkg/aim_v23/phy_convmf.F 8 CONVMF
     I                   kGrd,bi,bj,myThid)
./pkg/aim_v23/phy_lscond.F 109 LSCOND
        DO K=2,kGrd(J)
./pkg/aim_v23/phy_lscond.F 47 LSCOND
      INTEGER  kGrd(NGP)
./pkg/aim_v23/phy_lscond.F 8 LSCOND
     I                   kGrd,bi,bj,myThid)
./pkg/aim_v23/phy_radiat.F 162 RADSW
     I                  absCO2, kGrd,bi,bj,myThid)
./pkg/aim_v23/phy_radiat.F 210 RADSW
      INTEGER  kGrd(NGP)
./pkg/aim_v23/phy_radiat.F 241 RADSW
        NL1(J)=kGrd(J)-1
./pkg/aim_v23/phy_radiat.F 276 RADSW
        ICLTOP(J)= kGrd(J)
./pkg/aim_v23/phy_radiat.F 291 RADSW
        IF (kGrd(J).NE.0)
./pkg/aim_v23/phy_radiat.F 292 RADSW
     &  QCLOUD(J)= MAX( QA(J,kGrd(J)), QA(J,NL1(J)) )
./pkg/aim_v23/phy_radiat.F 346 RADSW
       K = kGrd(J)
./pkg/aim_v23/phy_radiat.F 354 RADSW
       DO K=2,kGrd(J)
./pkg/aim_v23/phy_radiat.F 386 RADSW
       DO K=2,kGrd(J)
./pkg/aim_v23/phy_radiat.F 396 RADSW
       DO K=2,kGrd(J)
./pkg/aim_v23/phy_radiat.F 428 RADSW
        IF ( K .LE. kGrd(J) ) THEN
./pkg/aim_v23/phy_radiat.F 476 RADSW
         IF ( K.GE.ICLTOP(J).AND.K.NE.kGrd(J) ) THEN
./pkg/aim_v23/phy_radiat.F 513 RADLW
     I                  kGrd,bi,bj,myThid)
./pkg/aim_v23/phy_radiat.F 558 RADLW
      INTEGER kGrd(NGP)
./pkg/aim_v23/phy_radiat.F 572 RADLW
        NL1(J)=kGrd(J)-1
./pkg/aim_v23/phy_radiat.F 601 RADLW
        K=kGrd(J)
./pkg/aim_v23/phy_radiat.F 647 RADLW
        DO K=2,kGrd(J)
./pkg/aim_v23/phy_radiat.F 698 RADLW
        DO K=kGrd(J),2,-1
./pkg/aim_v23/phy_snow_precip.F 106 SNOW_PRECIP
        IF (kGrd(J).NE.0 .AND. IDEPTH(J).NE.0 ) THEN
./pkg/aim_v23/phy_snow_precip.F 107 SNOW_PRECIP
          Ktop = kGrd(J) - IDEPTH(J)
./pkg/aim_v23/phy_snow_precip.F 14 SNOW_PRECIP
     I                   kGrd,bi,bj,myThid)
./pkg/aim_v23/phy_snow_precip.F 64 SNOW_PRECIP
      INTEGER  kGrd(NGP)
./pkg/aim_v23/phy_snow_precip.F 83 SNOW_PRECIP
       IF ( kGrd(J).NE.0 ) THEN
./pkg/aim_v23/phy_snow_precip.F 84 SNOW_PRECIP
        T1(J) = ThA(J,kGrd(J))*(PSA(J)**kappa)
./pkg/aim_v23/phy_snow_precip.F 98 SNOW_PRECIP
        DO K=2,kGrd(J)
./pkg/aim_v23/phy_suflux_prep.F 129 SUFLUX_PREP
        Ktmp = kGrd(J)
./pkg/aim_v23/phy_suflux_prep.F 13 SUFLUX_PREP
     I                   kGrd,bi,bj,myThid)
./pkg/aim_v23/phy_suflux_prep.F 158 SUFLUX_PREP
       IF ( kGrd(J) .GT. 0 ) THEN
./pkg/aim_v23/phy_suflux_prep.F 159 SUFLUX_PREP
        Q0(J)=FHUM0*Q0(J)+GHUM0*QA(J,kGrd(J))
./pkg/aim_v23/phy_suflux_prep.F 90 SUFLUX_PREP
      INTEGER kGrd(NGP)
./pkg/aim_v23/phy_vdifsc.F 130 VDIFSC
        Ktmp = kGrd(J)
./pkg/aim_v23/phy_vdifsc.F 170 VDIFSC
        DO K=3,kGrd(J)-2
./pkg/aim_v23/phy_vdifsc.F 190 VDIFSC
       DO K=1,kGrd(J)-1
./pkg/aim_v23/phy_vdifsc.F 62 VDIFSC
      INTEGER  kGrd(NGP)
./pkg/aim_v23/phy_vdifsc.F 8 VDIFSC
     I                   kGrd,bi,bj,myThid)
./pkg/aim_v23/phy_vdifsc.F 94 VDIFSC
        NL1 = kGrd(J)-1