Symbol Description Uses
bet 23



File Line number Procedure Code
./model/src/solve_tridiagonal.F 102 SOLVE_TRIDIAGONAL
     &         - c3d(i,j,k)*bet(i,j,k)*y3d(i,j,k+1,bi,bj)
./model/src/solve_tridiagonal.F 48 SOLVE_TRIDIAGONAL
      _RL bet(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
./model/src/solve_tridiagonal.F 58 SOLVE_TRIDIAGONAL
           bet(i,j,1) = 1. _d 0 / b3d(i,j,1)
./model/src/solve_tridiagonal.F 60 SOLVE_TRIDIAGONAL
           bet(i,j,1) = 0. _d 0
./model/src/solve_tridiagonal.F 70 SOLVE_TRIDIAGONAL
         tmpvar = b3d(i,j,k) - a3d(i,j,k)*c3d(i,j,k-1)*bet(i,j,k-1)
./model/src/solve_tridiagonal.F 72 SOLVE_TRIDIAGONAL
           bet(i,j,k) = 1. _d 0 / tmpvar
./model/src/solve_tridiagonal.F 74 SOLVE_TRIDIAGONAL
           bet(i,j,k) = 0. _d 0
./model/src/solve_tridiagonal.F 83 SOLVE_TRIDIAGONAL
         y3d(i,j,1,bi,bj) = y3d(i,j,1,bi,bj)*bet(i,j,1)
./model/src/solve_tridiagonal.F 91 SOLVE_TRIDIAGONAL
     &                      )*bet(i,j,k) 
./model/src/impldiff.F 141 IMPLDIFF
          bet(i,j,k) = 1. _d 0
./model/src/impldiff.F 154 IMPLDIFF
         IF (b(i,j,1).NE.0.) bet(i,j,1) = 1. _d 0 / b(i,j,1)
./model/src/impldiff.F 168 IMPLDIFF
          gam(i,j,k) = c(i,j,k-1)*bet(i,j,k-1)
./model/src/impldiff.F 170 IMPLDIFF
     &        bet(i,j,k) = 1. _d 0 / ( b(i,j,k) - a(i,j,k)*gam(i,j,k) )
./model/src/impldiff.F 181 IMPLDIFF
        gYNm1(i,j,1,bi,bj) = gXNm1(i,j,1,bi,bj)*bet(i,j,1)
./model/src/impldiff.F 187 IMPLDIFF
         gYnm1(i,j,k,bi,bj) = bet(i,j,k)*
./model/src/impldiff.F 57 IMPLDIFF
      _RL bet(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
./pkg/ggl90/ggl90_solve.F 109 GGL90_SOLVE
        gYNm1(i,j,1) = gXNm1(i,j,1)*bet(i,j,1)
./pkg/ggl90/ggl90_solve.F 115 GGL90_SOLVE
         gYnm1(i,j,k) = bet(i,j,k)*
./pkg/ggl90/ggl90_solve.F 47 GGL90_SOLVE
      _RL bet(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
./pkg/ggl90/ggl90_solve.F 69 GGL90_SOLVE
          bet(i,j,k) = 0. _d 0
./pkg/ggl90/ggl90_solve.F 82 GGL90_SOLVE
         IF (b(i,j,1).NE.0.) bet(i,j,1) = 1. _d 0 / b(i,j,1)
./pkg/ggl90/ggl90_solve.F 96 GGL90_SOLVE
          gam(i,j,k) = c(i,j,k-1)*bet(i,j,k-1)
./pkg/ggl90/ggl90_solve.F 98 GGL90_SOLVE
     &        bet(i,j,k) = 1. _d 0 / ( b(i,j,k) - a(i,j,k)*gam(i,j,k) )