File |
Line number |
Procedure |
Code |
./pkg/aim/phy_vdifsc.F |
118 |
VDIFSC |
NL1(J)=NLEVxy(J,myThid)-1 |
./pkg/aim/phy_vdifsc.F |
126 |
VDIFSC |
RTST(J) = RTSQ*DSIG(NL1(J)) |
./pkg/aim/phy_vdifsc.F |
127 |
VDIFSC |
& /((DSIG(NLEVxy(J,myThid))+DSIG(NL1(J)))*CP) |
./pkg/aim/phy_vdifsc.F |
128 |
VDIFSC |
RNL1(J) = -DSIG(NLEVxy(J,myThid))/DSIG(NL1(J)) |
./pkg/aim/phy_vdifsc.F |
138 |
VDIFSC |
DO k=NL1(J),NLEVxy(J,myThid) |
./pkg/aim/phy_vdifsc.F |
147 |
VDIFSC |
dThdp=(Th(J,NL1(J))-Th(J,NLEVxy(J,myThid))) |
./pkg/aim/phy_vdifsc.F |
149 |
VDIFSC |
stab(J)=dThdp+ALHC*(QSAT(J,NL1(J))-QSAT(J,NLEVxy(J,myThid))) |
./pkg/aim/phy_vdifsc.F |
161 |
VDIFSC |
& RH(J,NL1(J))*QSAT(J,NLEVxy(J,myThid)) ) |
./pkg/aim/phy_vdifsc.F |
188 |
VDIFSC |
TTENVD(J,NL1(J)) = RNL1(J)*TTENVD(J,NLEVxy(J,myThid)) |
./pkg/aim/phy_vdifsc.F |
191 |
VDIFSC |
QTENVD(J,NL1(J)) = RNL1(J)*QTENVD(J,NLEVxy(J,myThid)) |
./pkg/aim/phy_vdifsc.F |
200 |
VDIFSC |
QTENVD(J,NL1(J)) = RNL1(J)*QTENVD(J,NLEVxy(J,myThid)) |
./pkg/aim/phy_vdifsc.F |
59 |
VDIFSC |
INTEGER NL1(NGP) |
./pkg/aim/phy_suflux.F |
126 |
SUFLUX |
NL1(J)=NLEVxy(J,myThid)-1 |
./pkg/aim/phy_suflux.F |
132 |
SUFLUX |
& (TA(J,NLEVxy(J,myThid))-TA(J,NL1(J))) |
./pkg/aim/phy_suflux.F |
75 |
SUFLUX |
INTEGER NL1(NGP) |
./pkg/aim/phy_radiat.F |
135 |
RADSW |
INTEGER NL1(NGP) |
./pkg/aim/phy_radiat.F |
153 |
RADSW |
NL1(J)=NLEVxy(J,myThid)-1 |
./pkg/aim/phy_radiat.F |
177 |
RADSW |
DO 124 K=2,NL1(J) |
./pkg/aim/phy_radiat.F |
182 |
RADSW |
IF ( NL1(J) .GT. 0 ) THEN |
./pkg/aim/phy_radiat.F |
183 |
RADSW |
CLOUDC(J)=MIN(CLOUDC(J),DRHCL)*MIN(QA(J,NL1(J)),QACL)*RCL |
./pkg/aim/phy_radiat.F |
204 |
RADSW |
DO 204 K=2,NL1(J) |
./pkg/aim/phy_radiat.F |
206 |
RADSW |
* +ABCSW*CLOUDC(J)*QA(J,NL1(J)))*PSA(J)*DSIG(K)) |
./pkg/aim/phy_radiat.F |
304 |
RADSW |
DO 514 K=2,NL1(J) |
./pkg/aim/phy_radiat.F |
306 |
RADSW |
* +ABCLW*CLOUDC(J)*QA(J,NL1(J)))*PSA(J)*DSIG(K)) |
./pkg/aim/phy_radiat.F |
425 |
RADLW |
INTEGER NL1(NGP) |
./pkg/aim/phy_radiat.F |
443 |
RADLW |
NL1(J)=NLEVxy(J,myThid)-1 |
./pkg/aim/phy_radiat.F |
466 |
RADLW |
DO 104 K=1,NL1(J) |
./pkg/aim/phy_radiat.F |
476 |
RADLW |
& 2.*ST4A(J,NLEVxy(J,myThid),1)-ST4A(J,NL1(J),2) |
./pkg/aim_v23/phy_suflux_prep.F |
130 |
SUFLUX_PREP |
NL1 = Ktmp-1 |
./pkg/aim_v23/phy_suflux_prep.F |
134 |
SUFLUX_PREP |
T0(J) = TA(J,Ktmp) + WVS(J)*(TA(J,Ktmp)-TA(J,NL1)) |
./pkg/aim_v23/phy_suflux_prep.F |
99 |
SUFLUX_PREP |
INTEGER J, Ktmp, NL1 |
./pkg/aim_v23/phy_vdifsc.F |
131 |
VDIFSC |
NL1 = Ktmp - 1 |
./pkg/aim_v23/phy_vdifsc.F |
134 |
VDIFSC |
DRH0=RHGRAD*(SIG(Ktmp)-SIG(NL1)) |
./pkg/aim_v23/phy_vdifsc.F |
138 |
VDIFSC |
DMSE = dSEdp(J,NL1) + ALHC*(QA(J,Ktmp)-QSAT(J,NL1)) |
./pkg/aim_v23/phy_vdifsc.F |
139 |
VDIFSC |
DRH = RH(J,Ktmp)-RH(J,NL1) |
./pkg/aim_v23/phy_vdifsc.F |
145 |
VDIFSC |
TTENVD(J,NL1) = FLUXSE*RSIG(NL1) |
./pkg/aim_v23/phy_vdifsc.F |
150 |
VDIFSC |
QTENVD(J,NL1) = FLUXQ*RSIG(NL1) |
./pkg/aim_v23/phy_vdifsc.F |
157 |
VDIFSC |
FLUXQ = QSAT(J,NL1)*DRH*CVDI(J)/TRVDI |
./pkg/aim_v23/phy_vdifsc.F |
158 |
VDIFSC |
QTENVD(J,NL1) = FLUXQ*RSIG(NL1) |
./pkg/aim_v23/phy_vdifsc.F |
68 |
VDIFSC |
INTEGER J, K, Ktmp, NL1 |
./pkg/aim_v23/phy_vdifsc.F |
94 |
VDIFSC |
NL1 = kGrd(J)-1 |
./pkg/aim_v23/phy_vdifsc.F |
96 |
VDIFSC |
IF (NL1.GE.2) THEN |
./pkg/aim_v23/phy_vdifsc.F |
97 |
VDIFSC |
CVDI(J) = (SIGH(NL1)-SIGH(1))/((NL1-1)*3600. _d 0) |
./pkg/aim_v23/phy_radiat.F |
177 |
RADSW |
INTEGER NL1(NGP) |
./pkg/aim_v23/phy_radiat.F |
190 |
RADSW |
NL1(J)=kGrd(J)-1 |
./pkg/aim_v23/phy_radiat.F |
223 |
RADSW |
DO K=NL1(J),2,-1 |
./pkg/aim_v23/phy_radiat.F |
234 |
RADSW |
& QCLOUD(J)= MAX( QA(J,kGrd(J)), QA(J,NL1(J)) ) |
./pkg/aim_v23/phy_radiat.F |
264 |
RADSW |
DO K=2,NL1(J) |
./pkg/aim_v23/phy_radiat.F |
477 |
RADLW |
INTEGER NL1(NGP) |
./pkg/aim_v23/phy_radiat.F |
484 |
RADLW |
NL1(J)=kGrd(J)-1 |
./pkg/aim_v23/phy_radiat.F |
514 |
RADLW |
ST4A(J,K,2)=2.*ST4A(J,K,1)-ST4A(J,NL1(J),2) |