Quick Links
About Release1
Install: Getting started
Downloading
Building the code
Running the code
Tutorials
Barotropic gyre
Baroclinic gyre
Global ocean
Open ocean convection
Gravity plume
Held-Saurez atmosphere
Documentation
Continuous formulation
Numerical discretization
Vector invariant equations
Linear advection Schemes
Non-linear advection Schemes
About
Installation
Tutorials
Documentation
Browse Code
Alphabetical list of page titles
About this document ...
Adjoint (1.3.9 )
Adjoint dump & restart - divided adjoint (DIVA) (5.5 )
Advection of momentum (2.13.1 )
Annotated call tree for MITgcm and WRAPPER (4.4.1 )
Appendix ATMOSPHERE (1.4 )
Appendix OCEAN (1.5 )
Appendix:OPERATORS (1.6 )
Atmosphere (1.3.2 )
Atmospheric Intermediate Physics: AIM (6.10 )
Automated testing (3.17.2 )
Automatic Differentiation (5. )
Baroclinic Gyre MITgcm Example (3.9 )
Barotropic Gyre MITgcm Example (3.8 )
Basic assumptions for the calendar tool (8.3.1 )
Binary input data (3.14.2 )
Boundary forced internal waves (1.2.5 )
Build and run the model (3.14.5 )
Building/compiling the code elsewhere (3.16.1 )
Building MITgcm (3.5 )
Building the AD code (5.2.2 )
Building with MPI (3.16.3 )
Bulk Formula Package (6.8 )
Calendar dates and time intervals (8.3.3 )
Centennial Time Scale Tracer Injection (3.15 )
Centered fourth order advection (2.16.3 )
Centered second order advection-diffusion (2.16.1 )
C grid staggering of variables (2.10.3 )
Code configuration (3.14.3 )
Code Configuration (3.15.4 )
Code Configuration (3.8.3 )
Code Configuration (3.9.4 )
Code configuration (5.3.2 )
Code configuration (5.4.2 )
Code description (5.4.1 )
Communication mechanisms (4.2.5 )
Communication primitives (4.2.8 )
Comparison of advection schemes (2.18 )
Compiling the model and its adjoint (5.3.3 )
Computational domain, geometry and time-discretization (3.16.5 )
Configuration (3.14.1 )
Configuration and setup (3.16.4 )
Continuity and horizontal pressure gradient terms (2.11 )
Continuous equations in `r' coordinates (1.3 )
Controlling communication (4.3.3 )
Convection and mixing over topography (1.2.4 )
Coordinate systems (1.6.1 )
Coriolis terms (2.13.2 )
Coriolis terms (2.14.3 )
Coupler for mapping between AIM and ocean (6.13 )
Coupling interface for Atmospheric Intermediate code (6.12 )
Crank-Nickelson barotropic time stepping (2.9.1 )
Curvature metric terms (2.13.3 )
Customizing MITgcm (3.16 )
Derivation of discrete energy conservation (2.13.7 )
Diagnostics and tools (7. )
DIC Package (6.4 )
Directory structure of model examples (3.4.2 )
Discrete Numerical Configuration (3.10.2 )
Discrete Numerical Configuration (3.11.2 )
Discrete Numerical Configuration (3.12.2 )
Discrete numerical configuration (3.13.3 )
Discrete Numerical Configuration (3.15.3 )
Discrete Numerical Configuration (3.8.2 )
Discrete Numerical Configuration (3.9.3 )
Discretization and Algorithm (2. )
Distributed memory communication (4.2.7 )
Do's and Don'ts (6.21.3 )
Do's and Don'ts (6.4.3 )
Equation of state (3.16.6 )
Equations of motion for the ocean (1.5.1 )
Equations solved (3.13.2 )
Equations Solved (3.8.1 )
Equations solved (3.9.2 )
Estimating Resource Requirements (4.4.3 )
exch2: Extended Cubed Sphere Topology (6.18 )
exch2, SIZE.h, and Multiprocessing (6.18.4 )
Experiment Configuration (3.10.3 )
Experiment Configuration (3.11.3 )
Experiment Configuration (3.12.3 )
Experiment configuration (3.13.5 )
Explicit time-stepping: Adams-Bashforth (2.4 )
FFT Filtering Code (6.20 )
Finding the pressure field (1.3.6 )
First order upwind advection (2.16.4 )
Flux-form momentum equations (2.13 )
Forcing/dissipation (1.3.7 )
Format of calendar dates (8.3.2 )
Forward or direct sensitivity (5.1.1 )
Full list of model examples (3.4.1 )
GCHEM Package (6.21 )
General features (8.4.1 )
General setup (5.2.1 )
Generating Topology Files for exch2 (6.18.3 )
Generic Advection/Diffusion (6.9 )
Gent/McWiliams/Redi SGS Eddy parameterization (6.3 )
Getting Started with MITgcm (3. )
Global atmosphere: `Held-Suarez' benchmark (1.2.1 )
Global ocean circulation (1.2.3 )
Global Ocean MITgcm Exmaple (3.10 )
Global state estimation of the ocean (1.2.7 )
GM parameterization (6.3.2 )
Gradient of Bernoulli function (2.14.5 )
Gravity Plume On a Continental Slope (3.14 )
Grid initialization and data (2.10.4 )
Griffies Skew Flux (6.3.3 )
Held-Suarez Atmosphere MITgcm Example (3.12 )
Horizontal dissipation (2.14.6 )
Horizontal dissipation (2.14.7 )
Horizontal grid (2.10.5 )
Hydrographic constraints (8.1.2 )
Hydrostatic balance (2.12 )
Hydrostatic Primitive Equations for the Atmosphere in pressurecoordinates (1.4.1 )
Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic andNon-hydrostatic forms (1.3.4 )
Illustrations of the model in action (1.2 )
Implicit time-stepping: backward method (2.5 )
Interface with ECCO (8. )
Introduction (1.1 )
Introduction (3.15.1 )
Introduction (5.5.1 )
Introduction (6.18.1 )
Introduction (6.19.1 )
Introduction (6.21.1 )
Introduction (6.4.1 )
Introduction (6.9.1 )
Invoking exch2 (6.18.2 )
Key Routines (6.18.6 )
Key subroutines and parameters (6.21.2 )
Key subroutines and parameters (6.4.2 )
Key subroutines, parameters and files (6.10.1 )
Key subroutines, parameters and files (6.12.1 )
Key subroutines, parameters and files (6.13.1 )
Key subroutines, parameters and files (6.14.1 )
Key subroutines, parameters and files (6.17.1 )
Key subroutines, parameters and files (6.20.1 )
Key subroutines, parameters and files (6.9.2 )
Key Variables (6.18.5 )
Kinematic Boundary conditions (1.3.1 )
Kinetic energy (2.14.2 )
Land package (6.11 )
Lateral dissipation (2.13.5 )
Linear advection schemes (2.16 )
Looking at the output (3.6.2 )
Machine model parallelism (4.2.4 )
MDSIO (6.16 )
Measuring and Characterizing Performance (4.4.2 )
Memory architecture (4.2.9 )
Method 1 - Checkout from CVS (3.2.1 )
Method 2 - Tar file download (3.2.2 )
MITgcm Example Experiments (3.4 )
MITgcm execution under WRAPPER (4.4 )
MNC Internals (6.15.2 )
Model and directory structure (3.3 )
Model parameters (3.14.4 )
Model Uses (9. )
Momentum equations (3.16.7 )
Multi-dimensional advection (2.17.4 )
NetCDF I/O Integration: MNC (6.15 )
Non-hydrostatic formulation (2.8 )
Non-hydrostatic metric terms (2.13.4 )
Non-linear advection schemes (2.17 )
Non-linear free-surface (2.9.2 )
Notation (2.10.1 )
Number of iterations vs. number of simulations (8.4.3 )
Numerical stability criteria and other considerations (3.13.4 )
Obtaining the code (3.2 )
Ocean (1.3.3 )
Ocean biogeochemical cycles (1.2.8 )
Ocean gyres (1.2.2 )
Ocean vertical mixing - the nonlocal K-profile parameterization scheme KPP (6.5 )
Output files (3.6.1 )
Overall architectural goals (4.1 )
Overview (3.10.1 )
Overview (3.11.1 )
Overview (3.12.1 )
Overview (3.13.1 )
Overview (3.15.2 )
Overview (3.9.1 )
Overview of MITgcm (1. )
Overview of the experiment (5.3.1 )
Package Activation (6.1.2 )
Package Coding Standards (6.2 )
Package Inclusion/Exclusion (6.1.1 )
Package Reference (6.3.8 )
Packages are Not Libraries (6.2.1 )
Parameter sensitivity using the adjoint of MITgcm (1.2.6 )
P coordinate Global Ocean MITgcm Example (3.11 )
Physical Parameterization and Packages (6. )
Pre-processing software (7.2 )
Pressure method with implicit linear free-surface (2.3 )
Pressure method with rigid-lid (2.2 )
Recipe 1: single processor (5.5.2 )
Recipe 2: multi processor (MPI) (5.5.3 )
Redi scheme: Isopycnal diffusion (6.3.1 )
Reference Material (6.21.4 )
Reference Material (6.4.4 )
Relative vorticity (2.14.1 )
Reverse or adjoint sensitivity (5.1.2 )
Running MITgcm (3.6 )
Running the example (3.13.6 )
Running The Example (3.9.5 )
RW Basic binary I/O utilities (6.19 )
Sea Ice Package: ``seaice'' (6.7 )
Sea surface height from TOPEX/Poseidon and ERS-1/2 altimetry (8.1.1 )
Second order flux limiters (2.17.1 )
Sensitivity of Air-Sea Exchange to Tracer Injection Site (5.3 )
Shapiro Filter (2.19 )
Shared memory communication (4.2.6 )
Shear terms (2.14.4 )
Short routine description (8.3.6 )
Simulation controls (3.16.9 )
Simulations of laboratory experiments (1.2.9 )
Simulation state monitoring toolkit (6.17 )
Software Architecture (4. )
Solution strategy (1.3.5 )
Some basic algebra (5.1 )
Spatial discretization of the dynamical equations (2.10 )
Specifying a domain decomposition (4.3.1 )
Staggered baroclinic time-stepping (2.7 )
Starting the code (4.3.2 )
Storing vs. recomputation in reverse mode (5.1.3 )
Summary (4.2.10 )
Summary (8.2.1 )
Supporting hardware neutrality (4.2.2 )
Surface Driven Convection (3.13 )
Synchronous time-stepping: variables co-located in time (2.6 )
Tapering and stability (6.3.5 )
Tapering: Danabasoglu and McWilliams, J. Clim. 1995 (6.3.6 )
Tapering: Large, Danabasoglu and Doney, JPO 1997 (6.3.7 )
Target hardware (4.2.1 )
Testing (3.17 )
The AD build process in detail (5.2.3 )
The calendar package cal (8.3 )
The control variables (independent variables) (5.2.5 )
The cost function (dependent variable) (5.2.4 )
The ECCO state estimation cost function DRAFT!!! (8.1 )
The external forcing package exf (8.2 )
The finite volume method: finite volumes versus finite difference (2.10.2 )
The gradient check package (5.4 )
The individual calendars (8.3.5 )
The line search optimisation algorithm (8.4 )
The online vs. offline version (8.4.2 )
Thermodynamic Sea Ice Package: ``thsice'' (6.6 )
Third order direct space time (2.17.2 )
Third order direct space time with flux limiting (2.17.3 )
Third order upwind bias advection (2.16.2 )
Time-stepping (2.1 )
Time-stepping of tracers: ABII (2.15.1 )
TLM and ADM generation in general (5.2 )
Toolkit for building couplers (6.14 )
Topography: partially filled cells (2.10.7 )
Tracer equations (2.15 )
Tracer equations (3.16.8 )
Tutorials (3.7 )
Using genmake2 (3.16.2 )
Using MITgcm Packages (6.1 )
Using MNC (6.15.1 )
Using testreport (3.17.1 )
Using the calendar together with MITgcm (8.3.4 )
Using the WRAPPER (4.3 )
Utilities supplied with the model (7.1 )
utils/matlab (7.1.2 )
utils/scripts (7.1.1 )
Variable (6.3.4 )
Variants on the Free Surface (2.9 )
Vector invariant form (1.3.8 )
Vector invariant momentum equations (2.14 )
Vertical dissipation (2.13.6 )
Vertical dissipation (2.14.8 )
Vertical grid (2.10.6 )
Where to find information (3.1 )
WRAPPER (4.2 )
WRAPPER machine model (4.2.3 )
Copyright © 2002 Massachusetts Institute of Technology