next up previous contents
Next: Bibliography Up: How to Compute Geoid Previous: 4 Nota Bene   Contents


5 Notation

Symbol Description Units
$ GM_{\mathrm{g}}$ mass gravity constant of the geopotential model m$ ^{3}$ s$ ^{-2}$
$ a_{\mathrm{g}}$ semi-major axis of the geopotential model meters
$ GM$ mass gravity constant of the reference ellipsoid m$ ^{3}$ s$ ^{-2}$
$ a$ semi-major axis of the reference ellipsoid meters
$ f$ flattening parameter of the reference ellipsoid no units
$ b$ semi-minor axis of the reference ellipsoid meters
$ E$ linear eccentricity meters
$ e$ first (numerical) eccentricity no units
$ e'$ second (numerical) eccentricity no units
$ \omega$ angular velocity of the Earth's rotation s$ ^{-1}$
$ \lambda$ longitude $ ^{\circ}E$ or radians
$ \varphi$ geographic latitude $ ^{\circ}N$ or radians
$ \bar{\varphi}$ geocentric latitude $ ^{\circ}N$ or radians
$ r$ local elliptic radius meters
$ g$ mean gravity ms$ ^{-2}$
$ \gamma_{0}$ local normal gravity ms$ ^{-2}$
$ \gamma_{a},\gamma_{b}$ normal gravity at the equator, at the poles ms$ ^{-2}$
$ \bar{C}_{n,m}$ fully normalized spherical harmonic coefficients no units
$ \bar{S}_{n,m}$ (or Stokes' coefficients) of the gravity model no units
$ P_{n,m}$ associated Legendre functions of the first kind no units
$ \bar{P}_{n,m}$ fully normalized harmonics no units


next up previous contents
Next: Bibliography Up: How to Compute Geoid Previous: 4 Nota Bene   Contents
mlosch@awi-bremerhaven.de