Next: About this document ...
Up: How to Compute Geoid
Previous: 5 Notation
  Contents
-
Abramowitz, M. and I. A. Stegun, 1972. Handbook of Mathematical
Functions. Dover Publications, Inc., New York, pp. 1046.
-
-
Bronstein, I. N. and K. A. Semendjajew, 1991. Taschenbuch
der Mathematik. B. G. Teubner Verlagsgesellschaft, Stuttgart,
25. Edition, pp. 824.
-
-
Heiskanen, W. A. and H. Moritz, 1967. Physical Geodesy. W. H. Freeman
and Company, San Francisco, pp. 364.
-
-
Holmes, S. A. and W. E. Featherstone, 2002. A unified approach to
the Clenshaw summation and the recursive computation of very high
degree and order normalised associated Legendre functions
Journal of Geodesy, 76(5), pp. 279-299.
-
-
Paul, M. K., 1978. Recurrence relations for integrals of associated
Legendre functions. Bulletin geodesique, 52, pp. 177-190.
-
-
Rapp, R. H., 1989. The treatment of permanent tidal effects in the
analysis of satellite altimeter data for sea surface topography.
manuscripta geodaetica, 14(6), pp. 368-372.
-
-
Smith, D. A., 1998. There is no such thing as ``The'' EGM96 geoid:
Subtle points on the use of a global geopotential model. IGeS
Bulletin No.8, International Geoid Service, Milan, Italy,
pp. 17-28. Also available at:
http://www.ngs.noaa.gov/PUBS_LIB/EGM96_GEOID_PAPER/egm96_geoid_paper.html
-
-
Torge, W., 1991. Geodesy. Second Edition, de Gruyter, Berlin, pp. 264.
-
mlosch@awi-bremerhaven.de