next up previous contents
Next: 3.6 Reference ellipsoid Up: 3 Geoid Height, Step Previous: 3.4 Normal gravity   Contents

3.5 Permanent tide system

Make sure that your spherical harmonic coefficients are in the right permanent tide system. Generally, satellite altimetry products use the mean-tide system. Conversion between different permanent tide systems involves either modifying one spherical harmonic coefficient or adding a zonally uniform correction to the geoid undulations. To convert zero-tide coefficients to mean-tide, use:

$\displaystyle \bar{C}_{2,0}^{\mathrm{(mean tide)}} - \bar{C}_{2,0}^{\mathrm{(zero tide)}}$ $\displaystyle = 1 \times \frac{(-0.198\text{ m})r^{3}g}{a^{2}GM\sqrt{5}}$ (16)
  $\displaystyle = -1.39\times10^{-8},$    

to convert tide-free coefficients to mean-tide, use


$\displaystyle \bar{C}_{2,0}^{\mathrm{(mean tide)}} - \bar{C}_{2,0}^{\mathrm{(tide free)}}$ $\displaystyle = (1+k) \times \frac{(-0.198\text{ m})r^{3}g}{a^{2}GM\sqrt{5}}$ (17)
  $\displaystyle = (1+k)\times(-1.39)\times10^{-8},$    

where $ k$ s the (fundamentally unknowable) zero frequency Love number, which must be adopted. (For example, for EGM96, $ k$=0.3 was adopted). $ g$ is the mean gravity.

Alternatively, you could add the permanent tide correction in the space domain, after computing the geoid height $ N$ (Rapp, 1989):

$\displaystyle N^{\mathrm{(mean tide)}} - N^{\mathrm{(zero tide)}}$ $\displaystyle =$    
$\displaystyle 1$ $\displaystyle \times (-0.198$ m$\displaystyle ) \times \left(\frac{3}{2}\sin^{2}\bar{\varphi} - \frac{1}{2}\right)$   or (18)
$\displaystyle N^{\mathrm{(mean tide)}} - N^{\mathrm{(tide free)}}$ $\displaystyle =$    
$\displaystyle (1 + k)$ $\displaystyle \times (-0.198$ m$\displaystyle ) \times \left(\frac{3}{2}\sin^{2}\bar{\varphi} - \frac{1}{2}\right).$ (19)

This latter method appears to be the preferred one, because you can easily convert between permanent tide systems after the more expensive computation of the geoid undulation.


next up previous contents
Next: 3.6 Reference ellipsoid Up: 3 Geoid Height, Step Previous: 3.4 Normal gravity   Contents
mlosch@awi-bremerhaven.de