C $Header: /u/gcmpack/MITgcm/model/src/config_summary.F,v 1.160 2017/11/02 17:57:40 jmc Exp $ C $Name: $ #include "PACKAGES_CONFIG.h" #include "CPP_OPTIONS.h" #ifdef ALLOW_EXCH2 # include "W2_OPTIONS.h" #endif /* ALLOW_EXCH2 */ #ifdef ALLOW_MOM_COMMON # include "MOM_COMMON_OPTIONS.h" #endif C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| CBOP C !ROUTINE: CONFIG_SUMMARY C !INTERFACE: SUBROUTINE CONFIG_SUMMARY( myThid ) C !DESCRIPTION: C This routine summarizes the model parameter settings by writing a C tabulated list of the kernel model configuration variables. It C describes all the parameter settings in force and the meaning and C units of those parameters. Individal packages report a similar C table for each package using the same format as employed here. If C parameters are missing or incorrectly described or dimensioned C please contactC !USES: IMPLICIT NONE #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #ifdef ALLOW_EXCH2 # include "W2_EXCH2_SIZE.h" # include "W2_EXCH2_TOPOLOGY.h" #endif /* ALLOW_EXCH2 */ #include "EOS.h" #include "GRID.h" #ifdef ALLOW_MOM_COMMON # include "MOM_VISC.h" #endif C- need to put SET_GRID in last position for module conversion with OpenAD #include "SET_GRID.h" #ifdef ALLOW_MNC #include "MNC_PARAMS.h" #endif C !INPUT/OUTPUT PARAMETERS: C myThid :: Number of this instance of CONFIG_SUMMARY INTEGER myThid CEOP C !FUNCTIONS: INTEGER ILNBLNK EXTERNAL C !LOCAL VARIABLES: C msgBuf :: Temp. for building output string. C rUnits :: vertical coordinate units C ioUnit :: Temp. for fortran I/O unit C i, k :: Loop counters. CHARACTER*(MAX_LEN_MBUF) msgBuf CHARACTER*2 rUnits CHARACTER*10 endList INTEGER ioUnit INTEGER i, k _RL bufRL(Nr+1) INTEGER buffI(1) INTEGER coordLine INTEGER tileLine INTEGER gridNx, gridNy _BARRIER _BEGIN_MASTER(myThid) ioUnit = standardMessageUnit rUnits = ' m' endList = ' ; ' IF ( usingPCoords ) rUnits = 'Pa' #ifdef ALLOW_EXCH2 gridNx = exch2_mydNx(1) gridNy = exch2_mydNy(1) #else /* ALLOW_EXCH2 */ gridNx = Nx gridNy = Ny #endif /* ALLOW_EXCH2 */ WRITE(msgBuf,'(A)') &'// =======================================================' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') '// Model configuration' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') &'// =======================================================' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') '// ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') & '// "Physical" paramters ( PARM01 in namelist ) ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') '// ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL WRITE_0D_C( buoyancyRelation, -1, INDEX_NONE, & 'buoyancyRelation =', ' /* Type of relation to get Buoyancy */') CALL WRITE_0D_L( fluidIsAir, INDEX_NONE, & 'fluidIsAir =', ' /* fluid major constituent is Air */') CALL WRITE_0D_L( fluidIsWater, INDEX_NONE, & 'fluidIsWater =', ' /* fluid major constituent is Water */') CALL WRITE_0D_L( usingPCoords, INDEX_NONE, & 'usingPCoords =', ' /* use p (or p*) vertical coordinate */') CALL WRITE_0D_L( usingZCoords, INDEX_NONE, & 'usingZCoords =', ' /* use z (or z*) vertical coordinate */') CALL WRITE_1D_RL( tRef, Nr, INDEX_K, 'tRef =', & ' /* Reference temperature profile ( oC or K ) */') CALL WRITE_1D_RL( sRef, Nr, INDEX_K, 'sRef =', & ' /* Reference salinity profile ( psu ) */') C- Horizontal viscosity parameters: #ifdef ALLOW_MOM_COMMON CALL WRITE_0D_L( useStrainTensionVisc, INDEX_NONE, & 'useStrainTensionVisc=', & ' /* Use StrainTension Form of Viscous Operator */') CALL WRITE_0D_L( useVariableVisc, INDEX_NONE, & 'useVariableVisc =', ' /* Use variable horizontal viscosity */') CALL WRITE_0D_L( useHarmonicVisc, INDEX_NONE, & 'useHarmonicVisc =', ' /* Use harmonic horizontal viscosity */') CALL WRITE_0D_L( useBiharmonicVisc, INDEX_NONE, & 'useBiharmonicVisc=', ' /* Use biharmonic horiz. viscosity */') CALL WRITE_0D_L( useSmag3D, INDEX_NONE, & 'useSmag3D =', ' /* Use isotropic 3-D Smagorinsky viscosity */') IF ( useSmag3D ) & CALL WRITE_0D_RL( smag3D_coeff, INDEX_NONE, 'smag3D_coeff =', & ' /* Smagorinsky 3-D coefficient (Cs^2) (-) */') CALL WRITE_0D_RL( viscAh, INDEX_NONE, 'viscAh = ', & ' /* Lateral harmonic viscosity ( m^2/s ) */') IF ( viscAhD.NE.viscAh ) & CALL WRITE_0D_RL( viscAhD, INDEX_NONE, 'viscAhD = ', & ' /* Lateral harmonic viscosity (Divergence)( m^2/s ) */') IF ( viscAhZ.NE.viscAh ) & CALL WRITE_0D_RL( viscAhZ, INDEX_NONE, 'viscAhZ = ', & ' /* Lateral harmonic viscosity (Vorticity) ( m^2/s ) */') IF ( nonHydrostatic ) & CALL WRITE_0D_RL( viscAhW, INDEX_NONE, 'viscAhW = ', & ' /* Lateral harmonic viscosity in W eq. ( m^2/s ) */') IF ( useVariableVisc ) THEN CALL WRITE_0D_RL( viscAhMax, INDEX_NONE, 'viscAhMax =', & ' /* Maximum lateral harmonic viscosity ( m^2/s ) */') CALL WRITE_0D_RL( viscAhGrid, INDEX_NONE, 'viscAhGrid =', & ' /* Grid dependent lateral harmonic viscosity ( non-dim. ) */') CALL WRITE_0D_L( useFullLeith, INDEX_NONE, 'useFullLeith =', & ' /* Use Full Form of Leith Viscosity on/off flag*/') CALL WRITE_0D_L( useAreaViscLength, INDEX_NONE, & 'useAreaViscLength =', & ' /* Use area for visc length instead of geom. mean*/') CALL WRITE_0D_RL( viscC2leith, INDEX_NONE, 'viscC2leith =', & ' /* Leith harmonic visc. factor (on grad(vort),non-dim.) */') CALL WRITE_0D_RL( viscC2leithD, INDEX_NONE, 'viscC2leithD =', & ' /* Leith harmonic viscosity factor (on grad(div),non-dim.)*/') CALL WRITE_0D_RL( viscC2smag, INDEX_NONE, 'viscC2smag =', & ' /* Smagorinsky harmonic viscosity factor (non-dim.) */') ENDIF CALL WRITE_0D_RL( viscA4, INDEX_NONE, 'viscA4 = ', & ' /* Lateral biharmonic viscosity ( m^4/s ) */') IF ( viscA4D.NE.viscA4 ) & CALL WRITE_0D_RL( viscA4D, INDEX_NONE, 'viscA4D = ', & ' /* Lateral biharmonic viscosity (Divergence)( m^4/s ) */') IF ( viscA4Z.NE.viscA4 ) & CALL WRITE_0D_RL( viscA4Z, INDEX_NONE, 'viscA4Z = ', & ' /* Lateral biharmonic viscosity (Vorticity) ( m^4/s ) */') IF ( nonHydrostatic ) & CALL WRITE_0D_RL( viscA4W, INDEX_NONE, 'viscA4W = ', & ' /* Lateral biharmonic viscosity in W eq. ( m^2/s ) */') IF ( useVariableVisc ) THEN CALL WRITE_0D_RL( viscA4Max, INDEX_NONE, 'viscA4Max =', & ' /* Maximum biharmonic viscosity ( m^2/s ) */') CALL WRITE_0D_RL( viscA4Grid, INDEX_NONE, 'viscA4Grid =', & ' /* Grid dependent biharmonic viscosity ( non-dim. ) */') CALL WRITE_0D_RL( viscC4leith, INDEX_NONE,'viscC4leith =', & ' /* Leith biharm viscosity factor (on grad(vort), non-dim.)*/') CALL WRITE_0D_RL( viscC4leithD, INDEX_NONE,'viscC4leithD =', & ' /* Leith biharm viscosity factor (on grad(div), non-dim.) */') CALL WRITE_0D_RL( viscC4Smag, INDEX_NONE,'viscC4Smag =', & ' /* Smagorinsky biharm viscosity factor (non-dim) */') ENDIF CALL WRITE_0D_L( no_slip_sides, INDEX_NONE, & 'no_slip_sides =', ' /* Viscous BCs: No-slip sides */') CALL WRITE_0D_RL( sideDragFactor, INDEX_NONE, 'sideDragFactor =', & ' /* side-drag scaling factor (non-dim) */') C- Vertical viscosity parameters: CALL WRITE_1D_RL( viscArNr, Nr, INDEX_K, 'viscArNr =', & ' /* vertical profile of vertical viscosity (' & //rUnits//'^2/s )*/') CALL WRITE_0D_L( no_slip_bottom, INDEX_NONE, & 'no_slip_bottom =', ' /* Viscous BCs: No-slip bottom */') CALL WRITE_0D_L( bottomVisc_pCell, INDEX_NONE, & 'bottomVisc_pCell =', ' /* Partial-cell in bottom Visc. BC */') CALL WRITE_0D_RL( bottomDragLinear, INDEX_NONE, & 'bottomDragLinear =', & ' /* linear bottom-drag coefficient ( m/s ) */') CALL WRITE_0D_RL( bottomDragQuadratic, INDEX_NONE, & 'bottomDragQuadratic =', & ' /* quadratic bottom-drag coefficient (-) */') CALL WRITE_0D_I( selectBotDragQuadr, INDEX_NONE, & 'selectBotDragQuadr =', & ' /* select quadratic bottom drag options */') #endif /* ALLOW_MOM_COMMON */ CALL WRITE_0D_RL( diffKhT, INDEX_NONE,'diffKhT =', &' /* Laplacian diffusion of heat laterally ( m^2/s ) */') CALL WRITE_0D_RL( diffK4T, INDEX_NONE,'diffK4T =', &' /* Biharmonic diffusion of heat laterally ( m^4/s ) */') CALL WRITE_0D_RL( diffKhS, INDEX_NONE,'diffKhS =', &' /* Laplacian diffusion of salt laterally ( m^2/s ) */') CALL WRITE_0D_RL( diffK4S, INDEX_NONE,'diffK4S =', &' /* Biharmonic diffusion of salt laterally ( m^4/s ) */') CALL WRITE_1D_RL( diffKrNrT, Nr, INDEX_K, 'diffKrNrT =', & ' /* vertical profile of vertical diffusion of Temp (' & //rUnits//'^2/s )*/') IF ( tempVertDiff4 ) & CALL WRITE_1D_RL( diffKr4T, Nr, INDEX_K, 'diffKr4T =', & ' /* profile of vertical biharmonic diffusion of Temp (' & //rUnits//'^4/s )*/') CALL WRITE_1D_RL( diffKrNrS, Nr, INDEX_K, 'diffKrNrS =', & ' /* vertical profile of vertical diffusion of Salt (' & //rUnits//'^2/s )*/') IF ( saltVertDiff4 ) & CALL WRITE_1D_RL( diffKr4S, Nr, INDEX_K, 'diffKr4S =', & ' /* profile of vertical biharmonic diffusion of Salt (' & //rUnits//'^4/s )*/') CALL WRITE_0D_RL( diffKrBL79surf, INDEX_NONE,'diffKrBL79surf =', & ' /* Surface diffusion for Bryan and Lewis 79 ( m^2/s ) */') CALL WRITE_0D_RL( diffKrBL79deep, INDEX_NONE,'diffKrBL79deep =', & ' /* Deep diffusion for Bryan and Lewis 1979 ( m^2/s ) */') CALL WRITE_0D_RL( diffKrBL79scl, INDEX_NONE,'diffKrBL79scl =', & ' /* Depth scale for Bryan and Lewis 1979 ( m ) */') CALL WRITE_0D_RL( diffKrBL79Ho, INDEX_NONE,'diffKrBL79Ho =', & ' /* Turning depth for Bryan and Lewis 1979 ( m ) */') CALL WRITE_0D_RL( ivdc_kappa, INDEX_NONE,'ivdc_kappa =', & ' /* Implicit Vertical Diffusivity for Convection (' & //rUnits//'^2/s) */') CALL WRITE_0D_RL( hMixCriteria, INDEX_NONE,'hMixCriteria=', & ' /* Criteria for mixed-layer diagnostic */') CALL WRITE_0D_RL( dRhoSmall, INDEX_NONE,'dRhoSmall =', & ' /* Parameter for mixed-layer diagnostic */') CALL WRITE_0D_RL( hMixSmooth, INDEX_NONE,'hMixSmooth=', & ' /* Smoothing parameter for mixed-layer diagnostic */') C------------ CALL WRITE_0D_C( eosType, 0, INDEX_NONE, 'eosType =', & ' /* Type of Equation of State */') IF ( eosType .EQ. 'LINEAR' ) THEN CALL WRITE_0D_RL( tAlpha, INDEX_NONE,'tAlpha =', & ' /* Linear EOS thermal expansion coefficient ( 1/oC ) */') CALL WRITE_0D_RL( sBeta, INDEX_NONE,'sBeta =', & ' /* Linear EOS haline contraction coefficient ( 1/psu ) */') CALL WRITE_0D_RL( rhoNil, INDEX_NONE, 'rhoNil =', & ' /* Reference density for Linear EOS ( kg/m^3 ) */') ENDIF IF ( eosType .EQ. 'POLY3 ' ) THEN WRITE(msgBuf,'(A)') & 'Polynomial EQS parameters ( from POLY3.COEFFS ):' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) DO k = 1, Nr WRITE(msgBuf,'(I3,13F8.3)') & k,eosRefT(k),eosRefS(k),eosSig0(k), (eosC(i,k),i=1,9) CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) ENDDO WRITE(msgBuf,'(A)') ' ;' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) ENDIF IF ( usingZCoords ) THEN WRITE(msgBuf,'(2A)') 'selectP_inEOS_Zc =', & ' /* select pressure to use in EOS (0,1,2,3) */' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) buffI(1) = selectP_inEOS_Zc CALL PRINT_LIST_I( buffI, 1, 1, INDEX_NONE, & .FALSE., .TRUE., ioUnit ) WRITE(msgBuf,'(2A)') ' 0= -g*rhoConst*z ; ', & '1= pRef (from tRef,sRef); 2= Hyd P ; 3= Hyd+NH P' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL PRINT_MESSAGE(endList, ioUnit, SQUEEZE_RIGHT, myThid ) ENDIF C------------ IF ( fluidIsWater ) THEN CALL WRITE_0D_RL( HeatCapacity_Cp, INDEX_NONE, & 'HeatCapacity_Cp =', & ' /* Specific heat capacity ( J/kg/K ) */') ENDIF CALL WRITE_0D_RL( celsius2K, INDEX_NONE, 'celsius2K =', & ' /* 0 degree Celsius converted to Kelvin ( K ) */') IF ( fluidIsAir ) THEN CALL WRITE_0D_RL( atm_Rd, INDEX_NONE, 'atm_Rd = ', & ' /* gas constant for dry air ( J/kg/K ) */') CALL WRITE_0D_RL( atm_Cp, INDEX_NONE, 'atm_Cp = ', & ' /* specific heat (Cp) of dry air ( J/kg/K ) */') CALL WRITE_0D_RL( atm_kappa, INDEX_NONE, 'atm_kappa =', & ' /* kappa (=Rd/Cp ) of dry air */') CALL WRITE_0D_RL( atm_Rq, INDEX_NONE, 'atm_Rq = ', & ' /* water vap. specific vol. anomaly relative to dry air */') CALL WRITE_0D_RL( atm_Po, INDEX_NONE, 'atm_Po = ', & ' /* standard reference pressure ( Pa ) */') CALL WRITE_0D_RL( thetaConst, INDEX_NONE, 'thetaConst=', & ' /* constant reference for potential temperature ( K ) */') CALL WRITE_0D_I( integr_GeoPot, INDEX_NONE, 'integr_GeoPot =', & ' /* select how the geopotential is integrated */') CALL WRITE_0D_I( selectFindRoSurf, INDEX_NONE, & 'selectFindRoSurf=', & ' /* select how Surf.Ref. pressure is defined */') ENDIF CALL WRITE_0D_RL( rhoConst, INDEX_NONE,'rhoConst =', & ' /* Reference density (Boussinesq) ( kg/m^3 ) */') CALL WRITE_1D_RL( rhoFacC, Nr, INDEX_K, 'rhoFacC = ', & ' /* normalized Reference density @ cell-Center (-) */') CALL WRITE_1D_RL( rhoFacF, Nr+1, INDEX_K, 'rhoFacF = ', & ' /* normalized Reference density @ W-Interface (-) */') CALL WRITE_0D_RL( rhoConstFresh, INDEX_NONE,'rhoConstFresh =', & ' /* Fresh-water reference density ( kg/m^3 ) */') CALL WRITE_0D_RL( gravity, INDEX_NONE,'gravity =', &' /* Gravitational acceleration ( m/s^2 ) */') CALL WRITE_0D_RL( gBaro, INDEX_NONE,'gBaro =', &' /* Barotropic gravity ( m/s^2 ) */') CALL WRITE_1D_RL( gravFacC, Nr, INDEX_K, 'gravFacC = ', & ' /* gravity factor (vs surf.) @ cell-Center (-) */') CALL WRITE_1D_RL( gravFacF, Nr+1, INDEX_K, 'gravFacF = ', & ' /* gravity factor (vs surf.) @ W-Interface (-) */') CALL WRITE_0D_RL(rotationPeriod,INDEX_NONE,'rotationPeriod =', &' /* Rotation Period ( s ) */') CALL WRITE_0D_RL( omega, INDEX_NONE,'omega =', &' /* Angular velocity ( rad/s ) */') CALL WRITE_0D_RL( f0, INDEX_NONE,'f0 =', &' /* Reference coriolis parameter ( 1/s ) */') CALL WRITE_0D_RL( beta, INDEX_NONE,'beta =', &' /* Beta ( 1/(m.s) ) */') CALL WRITE_0D_RL( fPrime, INDEX_NONE,'fPrime =', &' /* Second coriolis parameter ( 1/s ) */') CALL WRITE_0D_L( rigidLid, INDEX_NONE, 'rigidLid =', &' /* Rigid lid on/off flag */') CALL WRITE_0D_L( implicitFreeSurface, INDEX_NONE, & 'implicitFreeSurface =', &' /* Implicit free surface on/off flag */') CALL WRITE_0D_RL( freeSurfFac, INDEX_NONE,'freeSurfFac =', &' /* Implicit free surface factor */') CALL WRITE_0D_RL( implicSurfPress, INDEX_NONE, & 'implicSurfPress =', & ' /* Surface Pressure implicit factor (0-1)*/') CALL WRITE_0D_RL( implicDiv2DFlow, INDEX_NONE, & 'implicDiv2DFlow =', & ' /* Barot. Flow Div. implicit factor (0-1)*/') CALL WRITE_0D_L( uniformLin_PhiSurf, INDEX_NONE, & 'uniformLin_PhiSurf =', & ' /* use uniform Bo_surf on/off flag*/') CALL WRITE_0D_L( uniformFreeSurfLev, INDEX_NONE, & 'uniformFreeSurfLev =', & ' /* free-surface level-index is uniform */') CALL WRITE_0D_RL( hFacMin, INDEX_NONE, 'hFacMin = ', & ' /* minimum partial cell factor (hFac) */') CALL WRITE_0D_RL( hFacMinDr, INDEX_NONE, 'hFacMinDr =', & ' /* minimum partial cell thickness ('//rUnits//') */') CALL WRITE_0D_L( exactConserv, INDEX_NONE, & 'exactConserv =', & ' /* Exact Volume Conservation on/off flag*/') CALL WRITE_0D_L( linFSConserveTr, INDEX_NONE, & 'linFSConserveTr =', & ' /* Tracer correction for Lin Free Surface on/off flag*/') WRITE(msgBuf,'(2A)') 'nonlinFreeSurf =', & ' /* Non-linear Free Surf. options (-1,0,1,2,3)*/' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) buffI(1) = nonlinFreeSurf CALL PRINT_LIST_I( buffI, 1, 1, INDEX_NONE, & .FALSE., .TRUE., ioUnit ) WRITE(msgBuf,'(2A)') ' -1,0= Off ; 1,2,3= On,', & ' 2=+rescale gU,gV, 3=+update cg2d solv.' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL PRINT_MESSAGE(endList, ioUnit, SQUEEZE_RIGHT, myThid ) CALL WRITE_0D_RL( hFacInf, INDEX_NONE, 'hFacInf = ', & ' /* lower threshold for hFac (nonlinFreeSurf only)*/') CALL WRITE_0D_RL( hFacSup, INDEX_NONE, 'hFacSup = ', & ' /* upper threshold for hFac (nonlinFreeSurf only)*/') CALL WRITE_0D_I( select_rStar, INDEX_NONE, & 'select_rStar =', & ' /* r* Vertical coord. options (=0 r coord.; >0 uses r*)*/') CALL WRITE_0D_L( useRealFreshWaterFlux, INDEX_NONE, & 'useRealFreshWaterFlux =', & ' /* Real Fresh Water Flux on/off flag*/') CALL WRITE_0D_RL( temp_EvPrRn, INDEX_NONE, & 'temp_EvPrRn =', & ' /* Temp. of Evap/Prec/R (UNSET=use local T)(oC)*/') CALL WRITE_0D_RL( salt_EvPrRn, INDEX_NONE, & 'salt_EvPrRn =', & ' /* Salin. of Evap/Prec/R (UNSET=use local S)(psu)*/') CALL WRITE_0D_I( selectAddFluid, INDEX_NONE, & 'selectAddFluid =', & ' /* option for mass source/sink of fluid (=0: off) */') CALL WRITE_0D_RL( temp_addMass, INDEX_NONE, & 'temp_addMass =', & ' /* Temp. of addMass array (UNSET=use local T)(oC)*/') CALL WRITE_0D_RL( salt_addMass, INDEX_NONE, & 'salt_addMass =', & ' /* Salin. of addMass array (UNSET=use local S)(psu)*/') IF ( .NOT.useRealFreshWaterFlux .OR. selectAddFluid.EQ.-1 & .OR. nonlinFreeSurf.LE.0 ) THEN CALL WRITE_0D_RL( convertFW2Salt, INDEX_NONE, & 'convertFW2Salt =', & ' /* convert F.W. Flux to Salt Flux (-1=use local S)(psu)*/') ENDIF CALL WRITE_0D_L( use3Dsolver, INDEX_NONE, & 'use3Dsolver =', ' /* use 3-D pressure solver on/off flag */') CALL WRITE_0D_L( nonHydrostatic, INDEX_NONE, & 'nonHydrostatic =', ' /* Non-Hydrostatic on/off flag */') CALL WRITE_0D_RL( nh_Am2, INDEX_NONE, 'nh_Am2 =', & ' /* Non-Hydrostatic terms scaling factor */') CALL WRITE_0D_RL( implicitNHPress, INDEX_NONE, & 'implicitNHPress =', & ' /* Non-Hyd Pressure implicit factor (0-1)*/') CALL WRITE_0D_I( selectNHfreeSurf, INDEX_NONE, & 'selectNHfreeSurf =', & ' /* Non-Hyd (free-)Surface option */') CALL WRITE_0D_L( quasiHydrostatic, INDEX_NONE, & 'quasiHydrostatic =', ' /* Quasi-Hydrostatic on/off flag */') CALL WRITE_0D_L( calc_wVelocity, INDEX_NONE, 'calc_wVelocity =', & ' /* vertical velocity calculation on/off flag */') CALL WRITE_0D_L( momStepping, INDEX_NONE, & 'momStepping =', ' /* Momentum equation on/off flag */') CALL WRITE_0D_L( vectorInvariantMomentum, INDEX_NONE, & 'vectorInvariantMomentum=', & ' /* Vector-Invariant Momentum on/off */') CALL WRITE_0D_L( momAdvection, INDEX_NONE, & 'momAdvection =', ' /* Momentum advection on/off flag */') CALL WRITE_0D_L( momViscosity, INDEX_NONE, & 'momViscosity =', ' /* Momentum viscosity on/off flag */') CALL WRITE_0D_L( momImplVertAdv, INDEX_NONE, 'momImplVertAdv=', & ' /* Momentum implicit vert. advection on/off*/') CALL WRITE_0D_L( implicitViscosity, INDEX_NONE, & 'implicitViscosity =', ' /* Implicit viscosity on/off flag */') C------------ WRITE(msgBuf,'(2A)') & 'selectImplicitDrag=', ' /* Implicit bot Drag options (0,1,2)*/' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) buffI(1) = selectImplicitDrag CALL PRINT_LIST_I( buffI, 1, 1, INDEX_NONE, & .FALSE., .TRUE., ioUnit ) WRITE(msgBuf,'(2A)') ' 0= Expl. ; 1= Impl. on provis. Vel ;', & ' 2= Fully Impl (with surf.P)' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL PRINT_MESSAGE(endList, ioUnit, SQUEEZE_RIGHT, myThid ) C------------ CALL WRITE_0D_L( metricTerms, INDEX_NONE, 'metricTerms =', & ' /* metric-Terms on/off flag */') CALL WRITE_0D_L( useNHMTerms, INDEX_NONE, 'useNHMTerms =', & ' /* Non-Hydrostatic Metric-Terms on/off */') C------------ WRITE(msgBuf,'(2A)') & 'selectCoriMap =', ' /* Coriolis Map options (0,1,2,3)*/' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) buffI(1) = selectCoriMap CALL PRINT_LIST_I( buffI, 1, 1, INDEX_NONE, & .FALSE., .TRUE., ioUnit ) WRITE(msgBuf,'(2A)') ' 0= f-Plane ; 1= Beta-Plane ;', & ' 2= Spherical ; 3= read from file' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL PRINT_MESSAGE(endList, ioUnit, SQUEEZE_RIGHT, myThid ) C------------ CALL WRITE_0D_L( use3dCoriolis, INDEX_NONE, & 'use3dCoriolis =', ' /* 3-D Coriolis on/off flag */') CALL WRITE_0D_L( useCoriolis, INDEX_NONE, & 'useCoriolis =', ' /* Coriolis on/off flag */') CALL WRITE_0D_L( useCDscheme, INDEX_NONE, & 'useCDscheme =', ' /* CD scheme on/off flag */') CALL WRITE_0D_L( useEnergyConservingCoriolis, INDEX_NONE, & 'useEnergyConservingCoriolis=', & ' /* Flx-Form Coriolis scheme flag */') CALL WRITE_0D_L( useJamartWetPoints, INDEX_NONE, & 'useJamartWetPoints=',' /* Coriolis WetPoints method flag */') CALL WRITE_0D_L( useJamartMomAdv, INDEX_NONE, & 'useJamartMomAdv=',' /* V.I Non-linear terms Jamart flag */') CALL WRITE_0D_L( useAbsVorticity, INDEX_NONE, & 'useAbsVorticity=',' /* V.I Works with f+zeta in Coriolis */') WRITE(msgBuf,'(2A)') 'selectVortScheme=', & ' /* V.I Scheme selector for Vorticity-Term */' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) buffI(1) = selectVortScheme CALL PRINT_LIST_I( buffI, 1, 1, INDEX_NONE, & .FALSE., .TRUE., ioUnit ) WRITE(msgBuf,'(2A)') ' = 0 : enstrophy (Shallow-Water Eq.)', & ' conserving scheme by Sadourny, JAS 75' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(2A)') ' = 1 : same as 0 with modified hFac' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(2A)') ' = 2 : energy conserving scheme', & ' (used by Sadourny in JAS 75 paper)' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(2A)') ' = 3 : energy (general)', & ' and enstrophy (2D, nonDiv.) conserving scheme' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(2A)') ' from Sadourny', & ' (Burridge & Haseler, ECMWF Rep.4, 1977)' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) c WRITE(msgBuf,'(2A)') ' = 4 : energy (general)', c & ' and enstrophy (2D, nonDiv.) conserving scheme' c CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) c WRITE(msgBuf,'(2A)') ' from Arakawa & Lamb, 77' c CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL PRINT_MESSAGE(endList, ioUnit, SQUEEZE_RIGHT, myThid ) CALL WRITE_0D_L( upwindVorticity, INDEX_NONE, & 'upwindVorticity=',' /* V.I Upwind bias vorticity flag */') CALL WRITE_0D_L( highOrderVorticity, INDEX_NONE, & 'highOrderVorticity=',' /* V.I High order vort. advect. flag */') CALL WRITE_0D_L( upwindShear, INDEX_NONE, & 'upwindShear=',' /* V.I Upwind vertical Shear advection flag */') CALL WRITE_0D_I( selectKEscheme, INDEX_NONE, & 'selectKEscheme=',' /* V.I Kinetic Energy scheme selector */') CALL WRITE_0D_L( momForcing, INDEX_NONE, & 'momForcing =', ' /* Momentum forcing on/off flag */') IF ( momForcing ) & CALL WRITE_0D_L( momTidalForcing, INDEX_NONE, & 'momTidalForcing =',' /* Momentum Tidal forcing on/off flag */') CALL WRITE_0D_L( momPressureForcing, INDEX_NONE, & 'momPressureForcing =', & ' /* Momentum pressure term on/off flag */') CALL WRITE_0D_L( implicitIntGravWave, INDEX_NONE, & 'implicitIntGravWave=', & ' /* Implicit Internal Gravity Wave flag */') CALL WRITE_0D_L( staggerTimeStep, INDEX_NONE, & 'staggerTimeStep = ', & ' /* Stagger time stepping on/off flag */') CALL WRITE_0D_L( doResetHFactors, INDEX_NONE, & 'doResetHFactors =', & ' /* reset thickness factors @ each time-step */') CALL WRITE_0D_L( multiDimAdvection, INDEX_NONE, & 'multiDimAdvection =', & ' /* enable/disable Multi-Dim Advection */') CALL WRITE_0D_L( useMultiDimAdvec, INDEX_NONE, & 'useMultiDimAdvec =', &' /* Multi-Dim Advection is/is-not used */') CALL WRITE_0D_L( implicitDiffusion, INDEX_NONE, & 'implicitDiffusion =',' /* Implicit Diffusion on/off flag */') CALL WRITE_0D_L( tempStepping, INDEX_NONE, & 'tempStepping =', ' /* Temperature equation on/off flag */') CALL WRITE_0D_L( tempAdvection, INDEX_NONE, & 'tempAdvection =', ' /* Temperature advection on/off flag */') CALL WRITE_0D_L( tempImplVertAdv,INDEX_NONE,'tempImplVertAdv =', & ' /* Temp. implicit vert. advection on/off */') CALL WRITE_0D_L( tempForcing, INDEX_NONE, & 'tempForcing =', ' /* Temperature forcing on/off flag */') #ifdef ALLOW_FRICTION_HEATING CALL WRITE_0D_L( addFrictionHeating, INDEX_NONE, & 'addFrictionHeating=',' /* account for frictional heating */') #endif #ifdef ALLOW_BALANCE_FLUXES CALL WRITE_0D_L( balanceQnet, INDEX_NONE, 'balanceQnet =', & ' /* balance net heat-flux on/off flag */') #endif CALL WRITE_0D_L( doThetaClimRelax, INDEX_NONE, & 'doThetaClimRelax =', ' /* apply SST relaxation on/off flag */') #ifdef ALLOW_BALANCE_RELAX CALL WRITE_0D_L( balanceThetaClimRelax, INDEX_NONE, & 'balanceThetaClimRelax=', & ' /* balance SST relaxation on/off flag */') #endif CALL WRITE_0D_L( tempIsActiveTr, INDEX_NONE, 'tempIsActiveTr =', & ' /* Temp. is a dynamically Active Tracer */') CALL WRITE_0D_L( saltStepping, INDEX_NONE, & 'saltStepping =', ' /* Salinity equation on/off flag */') CALL WRITE_0D_L( saltAdvection, INDEX_NONE, & 'saltAdvection =', ' /* Salinity advection on/off flag */') CALL WRITE_0D_L( saltImplVertAdv,INDEX_NONE,'saltImplVertAdv =', & ' /* Sali. implicit vert. advection on/off */') CALL WRITE_0D_L( saltForcing, INDEX_NONE, & 'saltForcing =', ' /* Salinity forcing on/off flag */') #ifdef ALLOW_BALANCE_FLUXES CALL WRITE_0D_L( balanceQnet, INDEX_NONE, 'balanceEmPmR =', & ' /* balance net fresh-water flux on/off flag */') #endif CALL WRITE_0D_L( doSaltClimRelax, INDEX_NONE, & 'doSaltClimRelax =', ' /* apply SSS relaxation on/off flag */') #ifdef ALLOW_BALANCE_RELAX CALL WRITE_0D_L( balanceSaltClimRelax, INDEX_NONE, & 'balanceSaltClimRelax=', & ' /* balance SSS relaxation on/off flag */') #endif CALL WRITE_0D_L( saltIsActiveTr, INDEX_NONE, 'saltIsActiveTr =', & ' /* Salt is a dynamically Active Tracer */') CALL WRITE_0D_I( readBinaryPrec, INDEX_NONE, ' readBinaryPrec =', & ' /* Precision used for reading binary files */') CALL WRITE_0D_I(writeBinaryPrec, INDEX_NONE, 'writeBinaryPrec =', & ' /* Precision used for writing binary files */') C--- c CALL WRITE_0D_I(rwSuffixType, INDEX_NONE, 'rwSuffixType =', c & ' /* Select format of mds file suffix */') WRITE(msgBuf,'(2A)') ' rwSuffixType = ', & ' /* select format of mds file suffix */' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) buffI(1) = rwSuffixType CALL PRINT_LIST_I( buffI, 1, 1, INDEX_NONE, & .FALSE., .TRUE., ioUnit ) WRITE(msgBuf,'(2A)') ' = 0 : myIter (I10.10) ;', & ' = 1 : 100*myTime (100th sec) ;' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(2A)') ' = 2 : myTime (seconds);', & ' = 3 : myTime/360 (10th of hr);' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(2A)') ' = 4 : myTime/3600 (hours)' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL PRINT_MESSAGE(endList, ioUnit, SQUEEZE_RIGHT, myThid ) C--- CALL WRITE_0D_L( globalFiles, INDEX_NONE, & ' globalFiles =',' /* write "global" (=not per tile) files */') CALL WRITE_0D_L( useSingleCpuIO, INDEX_NONE, & ' useSingleCpuIO =', ' /* only master MPI process does I/O */') CALL WRITE_0D_L( useSingleCpuInput, INDEX_NONE, & ' useSingleCpuInput =', ' /* only master process reads input */') WRITE(msgBuf,'(2A)') '/* debLev[*] :', & ' level of debug & auxiliary message printing */' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A,I3,A)') 'debLevZero =', debLevZero, & ' ; /* level of disabled aux. msg printing */' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A,I3,A)') ' debLevA =', debLevA, & ' ; /* level of minimum aux. msg printing */' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A,I3,A)') ' debLevB =', debLevB, & ' ; /* level of low aux. print (report read-file opening)*/' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A,I3,A)') ' debLevC =', debLevC, & ' ; /* level of moderate debug prt (most pkgs debug msg) */' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A,I3,A)') ' debLevD =', debLevD, & ' ; /* level of enhanced debug prt (add DEBUG_STATS prt) */' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A,I3,A)') ' debLevE =', debLevE, & ' ; /* level of extensive debug printing */' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL WRITE_0D_I( debugLevel, INDEX_NONE, & 'debugLevel =', ' /* select debug printing level */') CALL WRITE_0D_I( plotLevel, INDEX_NONE, & ' plotLevel =', ' /* select PLOT_FIELD printing level */') WRITE(msgBuf,'(A)') '// ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') & '// Elliptic solver(s) paramters ( PARM02 in namelist ) ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') '// ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL WRITE_0D_I( cg2dMaxIters, INDEX_NONE,'cg2dMaxIters =', &' /* Upper limit on 2d con. grad iterations */') CALL WRITE_0D_I( cg2dChkResFreq, INDEX_NONE,'cg2dChkResFreq =', &' /* 2d con. grad convergence test frequency */') CALL WRITE_0D_I( cg2dUseMinResSol, INDEX_NONE, & 'cg2dUseMinResSol=', & ' /* use cg2d last-iter(=0) / min-resid.(=1) solution */') CALL WRITE_0D_RL( cg2dTargetResidual, INDEX_NONE, & 'cg2dTargetResidual =', &' /* 2d con. grad target residual */') CALL WRITE_0D_RL( cg2dTargetResWunit, INDEX_NONE, & 'cg2dTargetResWunit =', &' /* CG2d target residual [W units] */') CALL WRITE_0D_I( cg2dPreCondFreq, INDEX_NONE,'cg2dPreCondFreq =', &' /* Freq. for updating cg2d preconditioner */') CALL WRITE_0D_L( useSRCGSolver, INDEX_NONE, & 'useSRCGSolver =', ' /* use single reduction CG solver(s) */') CALL WRITE_0D_I( printResidualFreq, INDEX_NONE, & 'printResidualFreq =', ' /* Freq. for printing CG residual */') WRITE(msgBuf,'(A)') '// ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') & '// Time stepping paramters ( PARM03 in namelist ) ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') '// ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL WRITE_0D_RL( deltaTMom, INDEX_NONE,'deltaTMom =', &' /* Momentum equation timestep ( s ) */') CALL WRITE_0D_RL( deltaTFreeSurf,INDEX_NONE,'deltaTFreeSurf =', & ' /* FreeSurface equation timestep ( s ) */') CALL WRITE_1D_RL( dTtracerLev, Nr, INDEX_K, 'dTtracerLev =', & ' /* Tracer equation timestep ( s ) */') CALL WRITE_0D_RL( deltaTClock, INDEX_NONE,'deltaTClock =', &' /* Model clock timestep ( s ) */') CALL WRITE_0D_RL( cAdjFreq, INDEX_NONE,'cAdjFreq =', &' /* Convective adjustment interval ( s ) */') CALL WRITE_0D_I( momForcingOutAB, INDEX_NONE, 'momForcingOutAB =', & ' /* =1: take Momentum Forcing out of Adams-Bash. stepping */') CALL WRITE_0D_I( tracForcingOutAB, INDEX_NONE, & 'tracForcingOutAB =', & ' /* =1: take T,S,pTr Forcing out of Adams-Bash. stepping */') CALL WRITE_0D_L( momDissip_In_AB,INDEX_NONE,'momDissip_In_AB =', & ' /* put Dissipation Tendency in Adams-Bash. stepping */') CALL WRITE_0D_L( doAB_onGtGs, INDEX_NONE, 'doAB_onGtGs =', & ' /* apply AB on Tendencies (rather than on T,S)*/') CALL WRITE_0D_RL( abEps, INDEX_NONE,'abEps =', &' /* Adams-Bashforth-2 stabilizing weight */') #ifdef ALLOW_ADAMSBASHFORTH_3 CALL WRITE_0D_RL( alph_AB, INDEX_NONE,'alph_AB =', &' /* Adams-Bashforth-3 primary factor */') CALL WRITE_0D_RL( beta_AB, INDEX_NONE,'beta_AB =', &' /* Adams-Bashforth-3 secondary factor */') CALL WRITE_0D_L( startFromPickupAB2, INDEX_NONE, & 'startFromPickupAB2=',' /* start from AB-2 pickup */') #endif CALL WRITE_0D_L( applyExchUV_early, INDEX_NONE, & 'applyExchUV_early =', & ' /* Apply EXCH to U,V earlier in time-step */') IF (useCDscheme) THEN CALL WRITE_0D_RL( tauCD, INDEX_NONE,'tauCD =', &' /* CD coupling time-scale ( s ) */') CALL WRITE_0D_RL( rCD, INDEX_NONE,'rCD =', &' /* Normalised CD coupling parameter */') CALL WRITE_0D_RL( epsAB_CD, INDEX_NONE,'epsAB_CD =', & ' /* AB-2 stabilizing weight for CD-scheme*/') ENDIF i = ILNBLNK(pickupSuff) IF ( i.GT.0 ) THEN CALL WRITE_0D_C( pickupSuff, 0, INDEX_NONE, & 'pickupSuff =', ' /* Suffix of pickup-file to restart from */') ENDIF CALL WRITE_0D_L( pickupStrictlyMatch, INDEX_NONE, & 'pickupStrictlyMatch=', & ' /* stop if pickup do not strictly match */') CALL WRITE_0D_I( nIter0, INDEX_NONE, 'nIter0 =', &' /* Run starting timestep number */') CALL WRITE_0D_I( nTimeSteps, INDEX_NONE,'nTimeSteps =', & ' /* Number of timesteps */') CALL WRITE_0D_I( nEndIter, INDEX_NONE, 'nEndIter =', &' /* Run ending timestep number */') CALL WRITE_0D_RL( baseTime, INDEX_NONE,'baseTime =', &' /* Model base time ( s ) */') CALL WRITE_0D_RL( startTime, INDEX_NONE,'startTime =', & ' /* Run start time ( s ) */') CALL WRITE_0D_RL( endTime, INDEX_NONE,'endTime =', &' /* Integration ending time ( s ) */') CALL WRITE_0D_RL( pChkPtFreq, INDEX_NONE,'pChkPtFreq =', & ' /* Permanent restart/pickup file interval ( s ) */') CALL WRITE_0D_RL( chkPtFreq, INDEX_NONE,'chkPtFreq =', & ' /* Rolling restart/pickup file interval ( s ) */') CALL WRITE_0D_L(pickup_write_mdsio,INDEX_NONE, & 'pickup_write_mdsio =', ' /* Model IO flag. */') CALL WRITE_0D_L(pickup_read_mdsio,INDEX_NONE, & 'pickup_read_mdsio =', ' /* Model IO flag. */') #ifdef ALLOW_MNC CALL WRITE_0D_L(pickup_write_mnc,INDEX_NONE, & 'pickup_write_mnc =', ' /* Model IO flag. */') CALL WRITE_0D_L(pickup_read_mnc,INDEX_NONE, & 'pickup_read_mnc =', ' /* Model IO flag. */') #endif c CALL WRITE_0D_L(pickup_write_immed,INDEX_NONE, c & 'pickup_write_immed =',' /* Model IO flag. */') CALL WRITE_0D_L(writePickupAtEnd,INDEX_NONE, & 'writePickupAtEnd =',' /* Model IO flag. */') CALL WRITE_0D_RL( dumpFreq, INDEX_NONE,'dumpFreq =', &' /* Model state write out interval ( s ). */') CALL WRITE_0D_L(dumpInitAndLast,INDEX_NONE,'dumpInitAndLast=', & ' /* write out Initial & Last iter. model state */') CALL WRITE_0D_L(snapshot_mdsio,INDEX_NONE, & 'snapshot_mdsio =', ' /* Model IO flag. */') #ifdef ALLOW_MNC CALL WRITE_0D_L(snapshot_mnc,INDEX_NONE, & 'snapshot_mnc =', ' /* Model IO flag. */') #endif CALL WRITE_0D_RL( monitorFreq, INDEX_NONE,'monitorFreq =', &' /* Monitor output interval ( s ). */') CALL WRITE_0D_I( monitorSelect, INDEX_NONE, 'monitorSelect =', & ' /* select group of variables to monitor */') CALL WRITE_0D_L(monitor_stdio,INDEX_NONE, & 'monitor_stdio =', ' /* Model IO flag. */') #ifdef ALLOW_MNC CALL WRITE_0D_L(monitor_mnc,INDEX_NONE, & 'monitor_mnc =', ' /* Model IO flag. */') #endif CALL WRITE_0D_RL( externForcingPeriod, INDEX_NONE, & 'externForcingPeriod =', ' /* forcing period (s) */') CALL WRITE_0D_RL( externForcingCycle, INDEX_NONE, & 'externForcingCycle =', ' /* period of the cyle (s). */') CALL WRITE_0D_RL( tauThetaClimRelax, INDEX_NONE, & 'tauThetaClimRelax =', ' /* relaxation time scale (s) */') CALL WRITE_0D_RL( tauSaltClimRelax, INDEX_NONE, & 'tauSaltClimRelax =', ' /* relaxation time scale (s) */') CALL WRITE_0D_RL( latBandClimRelax, INDEX_NONE, & 'latBandClimRelax =', ' /* max. Lat. where relaxation */') WRITE(msgBuf,'(A)') '// ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') & '// Gridding paramters ( PARM04 in namelist ) ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') '// ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) CALL WRITE_0D_L( usingCartesianGrid, INDEX_NONE, & 'usingCartesianGrid =', & ' /* Cartesian coordinates flag ( True/False ) */') CALL WRITE_0D_L( usingCylindricalGrid, INDEX_NONE, & 'usingCylindricalGrid =', & ' /* Cylindrical coordinates flag ( True/False ) */') CALL WRITE_0D_L( usingSphericalPolarGrid, INDEX_NONE, & 'usingSphericalPolarGrid =', & ' /* Spherical coordinates flag ( True/False ) */') CALL WRITE_0D_L( usingCurvilinearGrid, INDEX_NONE, & 'usingCurvilinearGrid =', & ' /* Curvilinear coordinates flag ( True/False ) */') CALL WRITE_0D_L( useMin4hFacEdges, INDEX_NONE, & 'useMin4hFacEdges =', & ' /* set hFacW,S as minimum of adjacent hFacC factor */') CALL WRITE_0D_L( interViscAr_pCell, INDEX_NONE, & 'interViscAr_pCell =', & ' /* account for partial-cell in interior vert. viscosity */') CALL WRITE_0D_L( interDiffKr_pCell, INDEX_NONE, & 'interDiffKr_pCell =', & ' /* account for partial-cell in interior vert. diffusion */') CALL WRITE_0D_I( pCellMix_select, INDEX_NONE, & 'pCellMix_select =', & ' /* option to enhance mixing near surface & bottom */') IF ( pCellMix_select.NE.0 ) THEN CALL WRITE_0D_RL( pCellMix_maxFac, INDEX_NONE, & 'pCellMix_maxFac =', ' /* maximum enhanced mixing factor */') CALL WRITE_0D_RL( pCellMix_delR, INDEX_NONE, 'pCellMix_delR =', & ' /* thickness criteria for too thin partial-cell ( ' & //rUnits//' ) */') CALL WRITE_1D_RL( pCellMix_viscAr, Nr, INDEX_K, & 'pCellMix_viscAr = ', & ' /* vertical viscosity for too thin partial-cell */') CALL WRITE_1D_RL( pCellMix_diffKr, Nr, INDEX_K, & 'pCellMix_diffKr = ', & ' /* vertical diffusivity for too thin partial-cell */') ENDIF CALL WRITE_0D_I( selectSigmaCoord, INDEX_NONE, & 'selectSigmaCoord =', & ' /* Hybrid-Sigma Vert. Coordinate option */') CALL WRITE_0D_RL( rSigmaBnd, INDEX_NONE, 'rSigmaBnd =', & ' /* r/sigma transition ( units of r == '//rUnits//' ) */') CALL WRITE_0D_RL( rkSign, INDEX_NONE,'rkSign =', &' /* index orientation relative to vertical coordinate */') CALL WRITE_0D_RL( gravitySign, INDEX_NONE,'gravitySign =', & ' /* gravity orientation relative to vertical coordinate */') CALL WRITE_0D_RL( seaLev_Z, INDEX_NONE, 'seaLev_Z =', & ' /* reference height of sea-level [m] */') IF ( usingZCoords ) THEN CALL WRITE_0D_RL( top_Pres, INDEX_NONE, 'top_Pres =', & ' /* reference pressure at the top [Pa] */') CALL WRITE_0D_RL( mass2rUnit, INDEX_NONE,'mass2rUnit =', & ' /* convert mass per unit area [kg/m2] to r-units [m] */') CALL WRITE_0D_RL( rUnit2mass, INDEX_NONE,'rUnit2mass =', & ' /* convert r-units [m] to mass per unit area [kg/m2] */') ENDIF IF ( usingPCoords ) THEN CALL WRITE_0D_RL( top_Pres, INDEX_NONE, 'top_Pres =', & ' /* pressure at the top (r-axis origin) [Pa] */') CALL WRITE_0D_RL( mass2rUnit, INDEX_NONE,'mass2rUnit =', & ' /* convert mass per unit area [kg/m2] to r-units [Pa] */') CALL WRITE_0D_RL( rUnit2mass, INDEX_NONE,'rUnit2mass =', & ' /* convert r-units [Pa] to mass per unit area [kg/m2] */') ENDIF CALL WRITE_COPY1D_RS( bufRL, drC,Nr+1,INDEX_K, 'drC = ', &' /* C spacing ( units of r ) */') CALL WRITE_COPY1D_RS( bufRL, drF, Nr, INDEX_K, 'drF = ', &' /* W spacing ( units of r ) */') IF ( selectSigmaCoord.NE.0 ) THEN CALL WRITE_COPY1D_RS( bufRL,dAHybSigF,Nr,INDEX_K,'dAHybSigF =', & ' /* vertical increment of Hybrid-sigma Coeff. (-) */') CALL WRITE_COPY1D_RS( bufRL,dBHybSigF,Nr,INDEX_K,'dBHybSigF =', & ' /* vertical increment of Hybrid-sigma Coeff. (-) */') ENDIF IF ( usingCurvilinearGrid ) THEN CALL WRITE_0D_RL( radius_fromHorizGrid, INDEX_NONE, & 'radius_fromHorizGrid = ', & '/* sphere Radius of input horiz. grid */') ELSE CALL WRITE_1D_RL( delX, gridNx, INDEX_I, 'delX = ', & ' /* U spacing ( m - cartesian, degrees - spherical ) */') CALL WRITE_1D_RL( delY, gridNy, INDEX_J, 'delY = ', & ' /* V spacing ( m - cartesian, degrees - spherical ) */') CALL WRITE_0D_RL( xgOrigin, INDEX_NONE,'xgOrigin = ', & '/* X-axis origin of West edge (cartesian: m, lat-lon: deg) */') CALL WRITE_0D_RL( ygOrigin, INDEX_NONE,'ygOrigin = ', & '/* Y-axis origin of South edge (cartesian: m, lat-lon: deg) */') ENDIF CALL WRITE_0D_RL( rSphere, INDEX_NONE,'rSphere = ', & ' /* Radius ( ignored - cartesian, m - spherical ) */') CALL WRITE_0D_L(deepAtmosphere,INDEX_NONE, 'deepAtmosphere =', & ' /* Deep/Shallow Atmosphere flag (True/False) */') coordLine = 1 tileLine = 1 CALL WRITE_XY_XLINE_RS( xC, coordLine, tileLine, 'xC', I ': P-point X coord ( deg. or m if cartesian)') CALL WRITE_XY_YLINE_RS( yC, coordLine, tileLine, 'yC', I ': P-point Y coord ( deg. or m if cartesian)') CALL WRITE_COPY1D_RS( bufRL, rC, Nr, INDEX_K, 'rcoord =', & ' /* P-point R coordinate ( units of r ) */') CALL WRITE_COPY1D_RS( bufRL, rF,Nr+1,INDEX_K, 'rF = ', &' /* W-Interf. R coordinate ( units of r ) */') IF ( selectSigmaCoord.NE.0 ) THEN CALL WRITE_COPY1D_RS(bufRL,aHybSigmF,Nr+1,INDEX_K,'aHybSigmF =', & ' /* Hybrid-sigma vert. Coord coeff. @ W-Interface (-) */') CALL WRITE_COPY1D_RS(bufRL,bHybSigmF,Nr+1,INDEX_K,'bHybSigmF =', & ' /* Hybrid-sigma vert. Coord coeff. @ W-Interface (-) */') ENDIF CALL WRITE_1D_RL( deepFacC, Nr, INDEX_K, 'deepFacC = ', & ' /* deep-model grid factor @ cell-Center (-) */') CALL WRITE_1D_RL( deepFacF, Nr+1, INDEX_K, 'deepFacF = ', & ' /* deep-model grid factor @ W-Interface (-) */') CALL WRITE_1D_RL(rVel2wUnit,Nr+1, INDEX_K,'rVel2wUnit =', & ' /* convert units: rVel -> wSpeed (=1 if z-coord)*/') CALL WRITE_1D_RL(wUnit2rVel,Nr+1, INDEX_K,'wUnit2rVel =', & ' /* convert units: wSpeed -> rVel (=1 if z-coord)*/') CALL WRITE_1D_RL( dBdrRef, Nr, INDEX_K, 'dBdrRef =', & ' /* Vertical grad. of reference buoyancy [(m/s/r)^2] */') CALL WRITE_0D_L( rotateGrid, INDEX_NONE, & 'rotateGrid =',' /* use rotated grid ( True/False ) */') CALL WRITE_0D_RL( phiEuler, INDEX_NONE,'phiEuler =', &' /* Euler angle, rotation about original z-coordinate [rad] */') CALL WRITE_0D_RL( thetaEuler, INDEX_NONE,'thetaEuler =', & ' /* Euler angle, rotation about new x-coordinate [rad] */') CALL WRITE_0D_RL( psiEuler, INDEX_NONE,'psiEuler =', & ' /* Euler angle, rotation about new z-coordinate [rad] */') C Grid along selected grid lines coordLine = 1 tileLine = 1 CALL WRITE_XY_XLINE_RS( dxF, coordLine, tileLine, 'dxF', I '( units: m )' ) CALL WRITE_XY_YLINE_RS( dxF, coordLine, tileLine, 'dxF', I '( units: m )' ) CALL WRITE_XY_XLINE_RS( dyF, coordLine, tileLine, 'dyF', I '( units: m )' ) CALL WRITE_XY_YLINE_RS( dyF, coordLine, tileLine, 'dyF', I '( units: m )' ) CALL WRITE_XY_XLINE_RS( dxG, coordLine, tileLine, 'dxG', I '( units: m )' ) CALL WRITE_XY_YLINE_RS( dxG, coordLine, tileLine, 'dxG', I '( units: m )' ) CALL WRITE_XY_XLINE_RS( dyG, coordLine, tileLine, 'dyG', I '( units: m )' ) CALL WRITE_XY_YLINE_RS( dyG, coordLine, tileLine, 'dyG', I '( units: m )' ) CALL WRITE_XY_XLINE_RS( dxC, coordLine, tileLine, 'dxC', I '( units: m )' ) CALL WRITE_XY_YLINE_RS( dxC, coordLine, tileLine, 'dxC', I '( units: m )' ) CALL WRITE_XY_XLINE_RS( dyC, coordLine, tileLine, 'dyC', I '( units: m )' ) CALL WRITE_XY_YLINE_RS( dyC, coordLine, tileLine, 'dyC', I '( units: m )' ) CALL WRITE_XY_XLINE_RS( dxV, coordLine, tileLine, 'dxV', I '( units: m )' ) CALL WRITE_XY_YLINE_RS( dxV, coordLine, tileLine, 'dxV', I '( units: m )' ) CALL WRITE_XY_XLINE_RS( dyU, coordLine, tileLine, 'dyU', I '( units: m )' ) CALL WRITE_XY_YLINE_RS( dyU, coordLine, tileLine, 'dyU', I '( units: m )' ) CALL WRITE_XY_XLINE_RS( rA , coordLine, tileLine, 'rA ', I '( units: m^2 )' ) CALL WRITE_XY_YLINE_RS( rA , coordLine, tileLine, 'rA ', I '( units: m^2 )' ) CALL WRITE_XY_XLINE_RS( rAw, coordLine, tileLine, 'rAw', I '( units: m^2 )' ) CALL WRITE_XY_YLINE_RS( rAw, coordLine, tileLine, 'rAw', I '( units: m^2 )' ) CALL WRITE_XY_XLINE_RS( rAs, coordLine, tileLine, 'rAs', I '( units: m^2 )' ) CALL WRITE_XY_YLINE_RS( rAs, coordLine, tileLine, 'rAs', I '( units: m^2 )' ) CALL WRITE_0D_RL( globalArea, INDEX_NONE, 'globalArea =', & ' /* Integrated horizontal Area (m^2) */') IF ( useCubedSphereExchange ) THEN CALL WRITE_0D_L( hasWetCSCorners,INDEX_NONE,'hasWetCSCorners =', & ' /* Domain contains CS corners (True/False) */') ENDIF i = ILNBLNK(the_run_name) IF ( i.GT.0 ) THEN CALL WRITE_0D_C( the_run_name, i, INDEX_NONE, & 'the_run_name = ', '/* Name of this simulation */' ) ENDIF WRITE(msgBuf,'(A)') &'// =======================================================' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') '// End of Model config. summary' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') &'// =======================================================' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') ' ' CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid ) _END_MASTER(myThid) _BARRIER RETURN END