C $Header: /u/gcmpack/MITgcm/model/src/config_summary.F,v 1.160 2017/11/02 17:57:40 jmc Exp $
C $Name: $
#include "PACKAGES_CONFIG.h"
#include "CPP_OPTIONS.h"
#ifdef ALLOW_EXCH2
# include "W2_OPTIONS.h"
#endif /* ALLOW_EXCH2 */
#ifdef ALLOW_MOM_COMMON
# include "MOM_COMMON_OPTIONS.h"
#endif
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
CBOP
C !ROUTINE: CONFIG_SUMMARY
C !INTERFACE:
SUBROUTINE CONFIG_SUMMARY( myThid )
C !DESCRIPTION:
C This routine summarizes the model parameter settings by writing a
C tabulated list of the kernel model configuration variables. It
C describes all the parameter settings in force and the meaning and
C units of those parameters. Individal packages report a similar
C table for each package using the same format as employed here. If
C parameters are missing or incorrectly described or dimensioned
C please contact
C !USES:
IMPLICIT NONE
#include "SIZE.h"
#include "EEPARAMS.h"
#include "PARAMS.h"
#ifdef ALLOW_EXCH2
# include "W2_EXCH2_SIZE.h"
# include "W2_EXCH2_TOPOLOGY.h"
#endif /* ALLOW_EXCH2 */
#include "EOS.h"
#include "GRID.h"
#ifdef ALLOW_MOM_COMMON
# include "MOM_VISC.h"
#endif
C- need to put SET_GRID in last position for module conversion with OpenAD
#include "SET_GRID.h"
#ifdef ALLOW_MNC
#include "MNC_PARAMS.h"
#endif
C !INPUT/OUTPUT PARAMETERS:
C myThid :: Number of this instance of CONFIG_SUMMARY
INTEGER myThid
CEOP
C !FUNCTIONS:
INTEGER ILNBLNK
EXTERNAL
C !LOCAL VARIABLES:
C msgBuf :: Temp. for building output string.
C rUnits :: vertical coordinate units
C ioUnit :: Temp. for fortran I/O unit
C i, k :: Loop counters.
CHARACTER*(MAX_LEN_MBUF) msgBuf
CHARACTER*2 rUnits
CHARACTER*10 endList
INTEGER ioUnit
INTEGER i, k
_RL bufRL(Nr+1)
INTEGER buffI(1)
INTEGER coordLine
INTEGER tileLine
INTEGER gridNx, gridNy
_BARRIER
_BEGIN_MASTER(myThid)
ioUnit = standardMessageUnit
rUnits = ' m'
endList = ' ; '
IF ( usingPCoords ) rUnits = 'Pa'
#ifdef ALLOW_EXCH2
gridNx = exch2_mydNx(1)
gridNy = exch2_mydNy(1)
#else /* ALLOW_EXCH2 */
gridNx = Nx
gridNy = Ny
#endif /* ALLOW_EXCH2 */
WRITE(msgBuf,'(A)')
&'// ======================================================='
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A)') '// Model configuration'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A)')
&'// ======================================================='
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A)') '// '
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A)')
& '// "Physical" paramters ( PARM01 in namelist ) '
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A)') '// '
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
CALL WRITE_0D_C( buoyancyRelation, -1, INDEX_NONE,
& 'buoyancyRelation =', ' /* Type of relation to get Buoyancy */')
CALL WRITE_0D_L( fluidIsAir, INDEX_NONE,
& 'fluidIsAir =', ' /* fluid major constituent is Air */')
CALL WRITE_0D_L( fluidIsWater, INDEX_NONE,
& 'fluidIsWater =', ' /* fluid major constituent is Water */')
CALL WRITE_0D_L( usingPCoords, INDEX_NONE,
& 'usingPCoords =', ' /* use p (or p*) vertical coordinate */')
CALL WRITE_0D_L( usingZCoords, INDEX_NONE,
& 'usingZCoords =', ' /* use z (or z*) vertical coordinate */')
CALL WRITE_1D_RL( tRef, Nr, INDEX_K, 'tRef =',
& ' /* Reference temperature profile ( oC or K ) */')
CALL WRITE_1D_RL( sRef, Nr, INDEX_K, 'sRef =',
& ' /* Reference salinity profile ( psu ) */')
C- Horizontal viscosity parameters:
#ifdef ALLOW_MOM_COMMON
CALL WRITE_0D_L( useStrainTensionVisc, INDEX_NONE,
& 'useStrainTensionVisc=',
& ' /* Use StrainTension Form of Viscous Operator */')
CALL WRITE_0D_L( useVariableVisc, INDEX_NONE,
& 'useVariableVisc =', ' /* Use variable horizontal viscosity */')
CALL WRITE_0D_L( useHarmonicVisc, INDEX_NONE,
& 'useHarmonicVisc =', ' /* Use harmonic horizontal viscosity */')
CALL WRITE_0D_L( useBiharmonicVisc, INDEX_NONE,
& 'useBiharmonicVisc=', ' /* Use biharmonic horiz. viscosity */')
CALL WRITE_0D_L( useSmag3D, INDEX_NONE,
& 'useSmag3D =', ' /* Use isotropic 3-D Smagorinsky viscosity */')
IF ( useSmag3D )
& CALL WRITE_0D_RL( smag3D_coeff, INDEX_NONE, 'smag3D_coeff =',
& ' /* Smagorinsky 3-D coefficient (Cs^2) (-) */')
CALL WRITE_0D_RL( viscAh, INDEX_NONE, 'viscAh = ',
& ' /* Lateral harmonic viscosity ( m^2/s ) */')
IF ( viscAhD.NE.viscAh )
& CALL WRITE_0D_RL( viscAhD, INDEX_NONE, 'viscAhD = ',
& ' /* Lateral harmonic viscosity (Divergence)( m^2/s ) */')
IF ( viscAhZ.NE.viscAh )
& CALL WRITE_0D_RL( viscAhZ, INDEX_NONE, 'viscAhZ = ',
& ' /* Lateral harmonic viscosity (Vorticity) ( m^2/s ) */')
IF ( nonHydrostatic )
& CALL WRITE_0D_RL( viscAhW, INDEX_NONE, 'viscAhW = ',
& ' /* Lateral harmonic viscosity in W eq. ( m^2/s ) */')
IF ( useVariableVisc ) THEN
CALL WRITE_0D_RL( viscAhMax, INDEX_NONE, 'viscAhMax =',
& ' /* Maximum lateral harmonic viscosity ( m^2/s ) */')
CALL WRITE_0D_RL( viscAhGrid, INDEX_NONE, 'viscAhGrid =',
& ' /* Grid dependent lateral harmonic viscosity ( non-dim. ) */')
CALL WRITE_0D_L( useFullLeith, INDEX_NONE, 'useFullLeith =',
& ' /* Use Full Form of Leith Viscosity on/off flag*/')
CALL WRITE_0D_L( useAreaViscLength, INDEX_NONE,
& 'useAreaViscLength =',
& ' /* Use area for visc length instead of geom. mean*/')
CALL WRITE_0D_RL( viscC2leith, INDEX_NONE, 'viscC2leith =',
& ' /* Leith harmonic visc. factor (on grad(vort),non-dim.) */')
CALL WRITE_0D_RL( viscC2leithD, INDEX_NONE, 'viscC2leithD =',
& ' /* Leith harmonic viscosity factor (on grad(div),non-dim.)*/')
CALL WRITE_0D_RL( viscC2smag, INDEX_NONE, 'viscC2smag =',
& ' /* Smagorinsky harmonic viscosity factor (non-dim.) */')
ENDIF
CALL WRITE_0D_RL( viscA4, INDEX_NONE, 'viscA4 = ',
& ' /* Lateral biharmonic viscosity ( m^4/s ) */')
IF ( viscA4D.NE.viscA4 )
& CALL WRITE_0D_RL( viscA4D, INDEX_NONE, 'viscA4D = ',
& ' /* Lateral biharmonic viscosity (Divergence)( m^4/s ) */')
IF ( viscA4Z.NE.viscA4 )
& CALL WRITE_0D_RL( viscA4Z, INDEX_NONE, 'viscA4Z = ',
& ' /* Lateral biharmonic viscosity (Vorticity) ( m^4/s ) */')
IF ( nonHydrostatic )
& CALL WRITE_0D_RL( viscA4W, INDEX_NONE, 'viscA4W = ',
& ' /* Lateral biharmonic viscosity in W eq. ( m^2/s ) */')
IF ( useVariableVisc ) THEN
CALL WRITE_0D_RL( viscA4Max, INDEX_NONE, 'viscA4Max =',
& ' /* Maximum biharmonic viscosity ( m^2/s ) */')
CALL WRITE_0D_RL( viscA4Grid, INDEX_NONE, 'viscA4Grid =',
& ' /* Grid dependent biharmonic viscosity ( non-dim. ) */')
CALL WRITE_0D_RL( viscC4leith, INDEX_NONE,'viscC4leith =',
& ' /* Leith biharm viscosity factor (on grad(vort), non-dim.)*/')
CALL WRITE_0D_RL( viscC4leithD, INDEX_NONE,'viscC4leithD =',
& ' /* Leith biharm viscosity factor (on grad(div), non-dim.) */')
CALL WRITE_0D_RL( viscC4Smag, INDEX_NONE,'viscC4Smag =',
& ' /* Smagorinsky biharm viscosity factor (non-dim) */')
ENDIF
CALL WRITE_0D_L( no_slip_sides, INDEX_NONE,
& 'no_slip_sides =', ' /* Viscous BCs: No-slip sides */')
CALL WRITE_0D_RL( sideDragFactor, INDEX_NONE, 'sideDragFactor =',
& ' /* side-drag scaling factor (non-dim) */')
C- Vertical viscosity parameters:
CALL WRITE_1D_RL( viscArNr, Nr, INDEX_K, 'viscArNr =',
& ' /* vertical profile of vertical viscosity ('
& //rUnits//'^2/s )*/')
CALL WRITE_0D_L( no_slip_bottom, INDEX_NONE,
& 'no_slip_bottom =', ' /* Viscous BCs: No-slip bottom */')
CALL WRITE_0D_L( bottomVisc_pCell, INDEX_NONE,
& 'bottomVisc_pCell =', ' /* Partial-cell in bottom Visc. BC */')
CALL WRITE_0D_RL( bottomDragLinear, INDEX_NONE,
& 'bottomDragLinear =',
& ' /* linear bottom-drag coefficient ( m/s ) */')
CALL WRITE_0D_RL( bottomDragQuadratic, INDEX_NONE,
& 'bottomDragQuadratic =',
& ' /* quadratic bottom-drag coefficient (-) */')
CALL WRITE_0D_I( selectBotDragQuadr, INDEX_NONE,
& 'selectBotDragQuadr =',
& ' /* select quadratic bottom drag options */')
#endif /* ALLOW_MOM_COMMON */
CALL WRITE_0D_RL( diffKhT, INDEX_NONE,'diffKhT =',
&' /* Laplacian diffusion of heat laterally ( m^2/s ) */')
CALL WRITE_0D_RL( diffK4T, INDEX_NONE,'diffK4T =',
&' /* Biharmonic diffusion of heat laterally ( m^4/s ) */')
CALL WRITE_0D_RL( diffKhS, INDEX_NONE,'diffKhS =',
&' /* Laplacian diffusion of salt laterally ( m^2/s ) */')
CALL WRITE_0D_RL( diffK4S, INDEX_NONE,'diffK4S =',
&' /* Biharmonic diffusion of salt laterally ( m^4/s ) */')
CALL WRITE_1D_RL( diffKrNrT, Nr, INDEX_K, 'diffKrNrT =',
& ' /* vertical profile of vertical diffusion of Temp ('
& //rUnits//'^2/s )*/')
IF ( tempVertDiff4 )
& CALL WRITE_1D_RL( diffKr4T, Nr, INDEX_K, 'diffKr4T =',
& ' /* profile of vertical biharmonic diffusion of Temp ('
& //rUnits//'^4/s )*/')
CALL WRITE_1D_RL( diffKrNrS, Nr, INDEX_K, 'diffKrNrS =',
& ' /* vertical profile of vertical diffusion of Salt ('
& //rUnits//'^2/s )*/')
IF ( saltVertDiff4 )
& CALL WRITE_1D_RL( diffKr4S, Nr, INDEX_K, 'diffKr4S =',
& ' /* profile of vertical biharmonic diffusion of Salt ('
& //rUnits//'^4/s )*/')
CALL WRITE_0D_RL( diffKrBL79surf, INDEX_NONE,'diffKrBL79surf =',
& ' /* Surface diffusion for Bryan and Lewis 79 ( m^2/s ) */')
CALL WRITE_0D_RL( diffKrBL79deep, INDEX_NONE,'diffKrBL79deep =',
& ' /* Deep diffusion for Bryan and Lewis 1979 ( m^2/s ) */')
CALL WRITE_0D_RL( diffKrBL79scl, INDEX_NONE,'diffKrBL79scl =',
& ' /* Depth scale for Bryan and Lewis 1979 ( m ) */')
CALL WRITE_0D_RL( diffKrBL79Ho, INDEX_NONE,'diffKrBL79Ho =',
& ' /* Turning depth for Bryan and Lewis 1979 ( m ) */')
CALL WRITE_0D_RL( ivdc_kappa, INDEX_NONE,'ivdc_kappa =',
& ' /* Implicit Vertical Diffusivity for Convection ('
& //rUnits//'^2/s) */')
CALL WRITE_0D_RL( hMixCriteria, INDEX_NONE,'hMixCriteria=',
& ' /* Criteria for mixed-layer diagnostic */')
CALL WRITE_0D_RL( dRhoSmall, INDEX_NONE,'dRhoSmall =',
& ' /* Parameter for mixed-layer diagnostic */')
CALL WRITE_0D_RL( hMixSmooth, INDEX_NONE,'hMixSmooth=',
& ' /* Smoothing parameter for mixed-layer diagnostic */')
C------------
CALL WRITE_0D_C( eosType, 0, INDEX_NONE, 'eosType =',
& ' /* Type of Equation of State */')
IF ( eosType .EQ. 'LINEAR' ) THEN
CALL WRITE_0D_RL( tAlpha, INDEX_NONE,'tAlpha =',
& ' /* Linear EOS thermal expansion coefficient ( 1/oC ) */')
CALL WRITE_0D_RL( sBeta, INDEX_NONE,'sBeta =',
& ' /* Linear EOS haline contraction coefficient ( 1/psu ) */')
CALL WRITE_0D_RL( rhoNil, INDEX_NONE, 'rhoNil =',
& ' /* Reference density for Linear EOS ( kg/m^3 ) */')
ENDIF
IF ( eosType .EQ. 'POLY3 ' ) THEN
WRITE(msgBuf,'(A)')
& 'Polynomial EQS parameters ( from POLY3.COEFFS ):'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
DO k = 1, Nr
WRITE(msgBuf,'(I3,13F8.3)')
& k,eosRefT(k),eosRefS(k),eosSig0(k), (eosC(i,k),i=1,9)
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
ENDDO
WRITE(msgBuf,'(A)') ' ;'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
ENDIF
IF ( usingZCoords ) THEN
WRITE(msgBuf,'(2A)') 'selectP_inEOS_Zc =',
& ' /* select pressure to use in EOS (0,1,2,3) */'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
buffI(1) = selectP_inEOS_Zc
CALL PRINT_LIST_I( buffI, 1, 1, INDEX_NONE,
& .FALSE., .TRUE., ioUnit )
WRITE(msgBuf,'(2A)') ' 0= -g*rhoConst*z ; ',
& '1= pRef (from tRef,sRef); 2= Hyd P ; 3= Hyd+NH P'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
CALL PRINT_MESSAGE(endList, ioUnit, SQUEEZE_RIGHT, myThid )
ENDIF
C------------
IF ( fluidIsWater ) THEN
CALL WRITE_0D_RL( HeatCapacity_Cp, INDEX_NONE,
& 'HeatCapacity_Cp =',
& ' /* Specific heat capacity ( J/kg/K ) */')
ENDIF
CALL WRITE_0D_RL( celsius2K, INDEX_NONE, 'celsius2K =',
& ' /* 0 degree Celsius converted to Kelvin ( K ) */')
IF ( fluidIsAir ) THEN
CALL WRITE_0D_RL( atm_Rd, INDEX_NONE, 'atm_Rd = ',
& ' /* gas constant for dry air ( J/kg/K ) */')
CALL WRITE_0D_RL( atm_Cp, INDEX_NONE, 'atm_Cp = ',
& ' /* specific heat (Cp) of dry air ( J/kg/K ) */')
CALL WRITE_0D_RL( atm_kappa, INDEX_NONE, 'atm_kappa =',
& ' /* kappa (=Rd/Cp ) of dry air */')
CALL WRITE_0D_RL( atm_Rq, INDEX_NONE, 'atm_Rq = ',
& ' /* water vap. specific vol. anomaly relative to dry air */')
CALL WRITE_0D_RL( atm_Po, INDEX_NONE, 'atm_Po = ',
& ' /* standard reference pressure ( Pa ) */')
CALL WRITE_0D_RL( thetaConst, INDEX_NONE, 'thetaConst=',
& ' /* constant reference for potential temperature ( K ) */')
CALL WRITE_0D_I( integr_GeoPot, INDEX_NONE, 'integr_GeoPot =',
& ' /* select how the geopotential is integrated */')
CALL WRITE_0D_I( selectFindRoSurf, INDEX_NONE,
& 'selectFindRoSurf=',
& ' /* select how Surf.Ref. pressure is defined */')
ENDIF
CALL WRITE_0D_RL( rhoConst, INDEX_NONE,'rhoConst =',
& ' /* Reference density (Boussinesq) ( kg/m^3 ) */')
CALL WRITE_1D_RL( rhoFacC, Nr, INDEX_K, 'rhoFacC = ',
& ' /* normalized Reference density @ cell-Center (-) */')
CALL WRITE_1D_RL( rhoFacF, Nr+1, INDEX_K, 'rhoFacF = ',
& ' /* normalized Reference density @ W-Interface (-) */')
CALL WRITE_0D_RL( rhoConstFresh, INDEX_NONE,'rhoConstFresh =',
& ' /* Fresh-water reference density ( kg/m^3 ) */')
CALL WRITE_0D_RL( gravity, INDEX_NONE,'gravity =',
&' /* Gravitational acceleration ( m/s^2 ) */')
CALL WRITE_0D_RL( gBaro, INDEX_NONE,'gBaro =',
&' /* Barotropic gravity ( m/s^2 ) */')
CALL WRITE_1D_RL( gravFacC, Nr, INDEX_K, 'gravFacC = ',
& ' /* gravity factor (vs surf.) @ cell-Center (-) */')
CALL WRITE_1D_RL( gravFacF, Nr+1, INDEX_K, 'gravFacF = ',
& ' /* gravity factor (vs surf.) @ W-Interface (-) */')
CALL WRITE_0D_RL(rotationPeriod,INDEX_NONE,'rotationPeriod =',
&' /* Rotation Period ( s ) */')
CALL WRITE_0D_RL( omega, INDEX_NONE,'omega =',
&' /* Angular velocity ( rad/s ) */')
CALL WRITE_0D_RL( f0, INDEX_NONE,'f0 =',
&' /* Reference coriolis parameter ( 1/s ) */')
CALL WRITE_0D_RL( beta, INDEX_NONE,'beta =',
&' /* Beta ( 1/(m.s) ) */')
CALL WRITE_0D_RL( fPrime, INDEX_NONE,'fPrime =',
&' /* Second coriolis parameter ( 1/s ) */')
CALL WRITE_0D_L( rigidLid, INDEX_NONE, 'rigidLid =',
&' /* Rigid lid on/off flag */')
CALL WRITE_0D_L( implicitFreeSurface, INDEX_NONE,
& 'implicitFreeSurface =',
&' /* Implicit free surface on/off flag */')
CALL WRITE_0D_RL( freeSurfFac, INDEX_NONE,'freeSurfFac =',
&' /* Implicit free surface factor */')
CALL WRITE_0D_RL( implicSurfPress, INDEX_NONE,
& 'implicSurfPress =',
& ' /* Surface Pressure implicit factor (0-1)*/')
CALL WRITE_0D_RL( implicDiv2DFlow, INDEX_NONE,
& 'implicDiv2DFlow =',
& ' /* Barot. Flow Div. implicit factor (0-1)*/')
CALL WRITE_0D_L( uniformLin_PhiSurf, INDEX_NONE,
& 'uniformLin_PhiSurf =',
& ' /* use uniform Bo_surf on/off flag*/')
CALL WRITE_0D_L( uniformFreeSurfLev, INDEX_NONE,
& 'uniformFreeSurfLev =',
& ' /* free-surface level-index is uniform */')
CALL WRITE_0D_RL( hFacMin, INDEX_NONE, 'hFacMin = ',
& ' /* minimum partial cell factor (hFac) */')
CALL WRITE_0D_RL( hFacMinDr, INDEX_NONE, 'hFacMinDr =',
& ' /* minimum partial cell thickness ('//rUnits//') */')
CALL WRITE_0D_L( exactConserv, INDEX_NONE,
& 'exactConserv =',
& ' /* Exact Volume Conservation on/off flag*/')
CALL WRITE_0D_L( linFSConserveTr, INDEX_NONE,
& 'linFSConserveTr =',
& ' /* Tracer correction for Lin Free Surface on/off flag*/')
WRITE(msgBuf,'(2A)') 'nonlinFreeSurf =',
& ' /* Non-linear Free Surf. options (-1,0,1,2,3)*/'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
buffI(1) = nonlinFreeSurf
CALL PRINT_LIST_I( buffI, 1, 1, INDEX_NONE,
& .FALSE., .TRUE., ioUnit )
WRITE(msgBuf,'(2A)') ' -1,0= Off ; 1,2,3= On,',
& ' 2=+rescale gU,gV, 3=+update cg2d solv.'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
CALL PRINT_MESSAGE(endList, ioUnit, SQUEEZE_RIGHT, myThid )
CALL WRITE_0D_RL( hFacInf, INDEX_NONE, 'hFacInf = ',
& ' /* lower threshold for hFac (nonlinFreeSurf only)*/')
CALL WRITE_0D_RL( hFacSup, INDEX_NONE, 'hFacSup = ',
& ' /* upper threshold for hFac (nonlinFreeSurf only)*/')
CALL WRITE_0D_I( select_rStar, INDEX_NONE,
& 'select_rStar =',
& ' /* r* Vertical coord. options (=0 r coord.; >0 uses r*)*/')
CALL WRITE_0D_L( useRealFreshWaterFlux, INDEX_NONE,
& 'useRealFreshWaterFlux =',
& ' /* Real Fresh Water Flux on/off flag*/')
CALL WRITE_0D_RL( temp_EvPrRn, INDEX_NONE,
& 'temp_EvPrRn =',
& ' /* Temp. of Evap/Prec/R (UNSET=use local T)(oC)*/')
CALL WRITE_0D_RL( salt_EvPrRn, INDEX_NONE,
& 'salt_EvPrRn =',
& ' /* Salin. of Evap/Prec/R (UNSET=use local S)(psu)*/')
CALL WRITE_0D_I( selectAddFluid, INDEX_NONE,
& 'selectAddFluid =',
& ' /* option for mass source/sink of fluid (=0: off) */')
CALL WRITE_0D_RL( temp_addMass, INDEX_NONE,
& 'temp_addMass =',
& ' /* Temp. of addMass array (UNSET=use local T)(oC)*/')
CALL WRITE_0D_RL( salt_addMass, INDEX_NONE,
& 'salt_addMass =',
& ' /* Salin. of addMass array (UNSET=use local S)(psu)*/')
IF ( .NOT.useRealFreshWaterFlux .OR. selectAddFluid.EQ.-1
& .OR. nonlinFreeSurf.LE.0 ) THEN
CALL WRITE_0D_RL( convertFW2Salt, INDEX_NONE,
& 'convertFW2Salt =',
& ' /* convert F.W. Flux to Salt Flux (-1=use local S)(psu)*/')
ENDIF
CALL WRITE_0D_L( use3Dsolver, INDEX_NONE,
& 'use3Dsolver =', ' /* use 3-D pressure solver on/off flag */')
CALL WRITE_0D_L( nonHydrostatic, INDEX_NONE,
& 'nonHydrostatic =', ' /* Non-Hydrostatic on/off flag */')
CALL WRITE_0D_RL( nh_Am2, INDEX_NONE, 'nh_Am2 =',
& ' /* Non-Hydrostatic terms scaling factor */')
CALL WRITE_0D_RL( implicitNHPress, INDEX_NONE,
& 'implicitNHPress =',
& ' /* Non-Hyd Pressure implicit factor (0-1)*/')
CALL WRITE_0D_I( selectNHfreeSurf, INDEX_NONE,
& 'selectNHfreeSurf =',
& ' /* Non-Hyd (free-)Surface option */')
CALL WRITE_0D_L( quasiHydrostatic, INDEX_NONE,
& 'quasiHydrostatic =', ' /* Quasi-Hydrostatic on/off flag */')
CALL WRITE_0D_L( calc_wVelocity, INDEX_NONE, 'calc_wVelocity =',
& ' /* vertical velocity calculation on/off flag */')
CALL WRITE_0D_L( momStepping, INDEX_NONE,
& 'momStepping =', ' /* Momentum equation on/off flag */')
CALL WRITE_0D_L( vectorInvariantMomentum, INDEX_NONE,
& 'vectorInvariantMomentum=',
& ' /* Vector-Invariant Momentum on/off */')
CALL WRITE_0D_L( momAdvection, INDEX_NONE,
& 'momAdvection =', ' /* Momentum advection on/off flag */')
CALL WRITE_0D_L( momViscosity, INDEX_NONE,
& 'momViscosity =', ' /* Momentum viscosity on/off flag */')
CALL WRITE_0D_L( momImplVertAdv, INDEX_NONE, 'momImplVertAdv=',
& ' /* Momentum implicit vert. advection on/off*/')
CALL WRITE_0D_L( implicitViscosity, INDEX_NONE,
& 'implicitViscosity =', ' /* Implicit viscosity on/off flag */')
C------------
WRITE(msgBuf,'(2A)')
& 'selectImplicitDrag=', ' /* Implicit bot Drag options (0,1,2)*/'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
buffI(1) = selectImplicitDrag
CALL PRINT_LIST_I( buffI, 1, 1, INDEX_NONE,
& .FALSE., .TRUE., ioUnit )
WRITE(msgBuf,'(2A)') ' 0= Expl. ; 1= Impl. on provis. Vel ;',
& ' 2= Fully Impl (with surf.P)'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
CALL PRINT_MESSAGE(endList, ioUnit, SQUEEZE_RIGHT, myThid )
C------------
CALL WRITE_0D_L( metricTerms, INDEX_NONE, 'metricTerms =',
& ' /* metric-Terms on/off flag */')
CALL WRITE_0D_L( useNHMTerms, INDEX_NONE, 'useNHMTerms =',
& ' /* Non-Hydrostatic Metric-Terms on/off */')
C------------
WRITE(msgBuf,'(2A)')
& 'selectCoriMap =', ' /* Coriolis Map options (0,1,2,3)*/'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
buffI(1) = selectCoriMap
CALL PRINT_LIST_I( buffI, 1, 1, INDEX_NONE,
& .FALSE., .TRUE., ioUnit )
WRITE(msgBuf,'(2A)') ' 0= f-Plane ; 1= Beta-Plane ;',
& ' 2= Spherical ; 3= read from file'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
CALL PRINT_MESSAGE(endList, ioUnit, SQUEEZE_RIGHT, myThid )
C------------
CALL WRITE_0D_L( use3dCoriolis, INDEX_NONE,
& 'use3dCoriolis =', ' /* 3-D Coriolis on/off flag */')
CALL WRITE_0D_L( useCoriolis, INDEX_NONE,
& 'useCoriolis =', ' /* Coriolis on/off flag */')
CALL WRITE_0D_L( useCDscheme, INDEX_NONE,
& 'useCDscheme =', ' /* CD scheme on/off flag */')
CALL WRITE_0D_L( useEnergyConservingCoriolis, INDEX_NONE,
& 'useEnergyConservingCoriolis=',
& ' /* Flx-Form Coriolis scheme flag */')
CALL WRITE_0D_L( useJamartWetPoints, INDEX_NONE,
& 'useJamartWetPoints=',' /* Coriolis WetPoints method flag */')
CALL WRITE_0D_L( useJamartMomAdv, INDEX_NONE,
& 'useJamartMomAdv=',' /* V.I Non-linear terms Jamart flag */')
CALL WRITE_0D_L( useAbsVorticity, INDEX_NONE,
& 'useAbsVorticity=',' /* V.I Works with f+zeta in Coriolis */')
WRITE(msgBuf,'(2A)') 'selectVortScheme=',
& ' /* V.I Scheme selector for Vorticity-Term */'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
buffI(1) = selectVortScheme
CALL PRINT_LIST_I( buffI, 1, 1, INDEX_NONE,
& .FALSE., .TRUE., ioUnit )
WRITE(msgBuf,'(2A)') ' = 0 : enstrophy (Shallow-Water Eq.)',
& ' conserving scheme by Sadourny, JAS 75'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(2A)') ' = 1 : same as 0 with modified hFac'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(2A)') ' = 2 : energy conserving scheme',
& ' (used by Sadourny in JAS 75 paper)'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(2A)') ' = 3 : energy (general)',
& ' and enstrophy (2D, nonDiv.) conserving scheme'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(2A)') ' from Sadourny',
& ' (Burridge & Haseler, ECMWF Rep.4, 1977)'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
c WRITE(msgBuf,'(2A)') ' = 4 : energy (general)',
c & ' and enstrophy (2D, nonDiv.) conserving scheme'
c CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
c WRITE(msgBuf,'(2A)') ' from Arakawa & Lamb, 77'
c CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
CALL PRINT_MESSAGE(endList, ioUnit, SQUEEZE_RIGHT, myThid )
CALL WRITE_0D_L( upwindVorticity, INDEX_NONE,
& 'upwindVorticity=',' /* V.I Upwind bias vorticity flag */')
CALL WRITE_0D_L( highOrderVorticity, INDEX_NONE,
& 'highOrderVorticity=',' /* V.I High order vort. advect. flag */')
CALL WRITE_0D_L( upwindShear, INDEX_NONE,
& 'upwindShear=',' /* V.I Upwind vertical Shear advection flag */')
CALL WRITE_0D_I( selectKEscheme, INDEX_NONE,
& 'selectKEscheme=',' /* V.I Kinetic Energy scheme selector */')
CALL WRITE_0D_L( momForcing, INDEX_NONE,
& 'momForcing =', ' /* Momentum forcing on/off flag */')
IF ( momForcing )
& CALL WRITE_0D_L( momTidalForcing, INDEX_NONE,
& 'momTidalForcing =',' /* Momentum Tidal forcing on/off flag */')
CALL WRITE_0D_L( momPressureForcing, INDEX_NONE,
& 'momPressureForcing =',
& ' /* Momentum pressure term on/off flag */')
CALL WRITE_0D_L( implicitIntGravWave, INDEX_NONE,
& 'implicitIntGravWave=',
& ' /* Implicit Internal Gravity Wave flag */')
CALL WRITE_0D_L( staggerTimeStep, INDEX_NONE,
& 'staggerTimeStep = ',
& ' /* Stagger time stepping on/off flag */')
CALL WRITE_0D_L( doResetHFactors, INDEX_NONE,
& 'doResetHFactors =',
& ' /* reset thickness factors @ each time-step */')
CALL WRITE_0D_L( multiDimAdvection, INDEX_NONE,
& 'multiDimAdvection =',
& ' /* enable/disable Multi-Dim Advection */')
CALL WRITE_0D_L( useMultiDimAdvec, INDEX_NONE,
& 'useMultiDimAdvec =',
&' /* Multi-Dim Advection is/is-not used */')
CALL WRITE_0D_L( implicitDiffusion, INDEX_NONE,
& 'implicitDiffusion =',' /* Implicit Diffusion on/off flag */')
CALL WRITE_0D_L( tempStepping, INDEX_NONE,
& 'tempStepping =', ' /* Temperature equation on/off flag */')
CALL WRITE_0D_L( tempAdvection, INDEX_NONE,
& 'tempAdvection =', ' /* Temperature advection on/off flag */')
CALL WRITE_0D_L( tempImplVertAdv,INDEX_NONE,'tempImplVertAdv =',
& ' /* Temp. implicit vert. advection on/off */')
CALL WRITE_0D_L( tempForcing, INDEX_NONE,
& 'tempForcing =', ' /* Temperature forcing on/off flag */')
#ifdef ALLOW_FRICTION_HEATING
CALL WRITE_0D_L( addFrictionHeating, INDEX_NONE,
& 'addFrictionHeating=',' /* account for frictional heating */')
#endif
#ifdef ALLOW_BALANCE_FLUXES
CALL WRITE_0D_L( balanceQnet, INDEX_NONE, 'balanceQnet =',
& ' /* balance net heat-flux on/off flag */')
#endif
CALL WRITE_0D_L( doThetaClimRelax, INDEX_NONE,
& 'doThetaClimRelax =', ' /* apply SST relaxation on/off flag */')
#ifdef ALLOW_BALANCE_RELAX
CALL WRITE_0D_L( balanceThetaClimRelax, INDEX_NONE,
& 'balanceThetaClimRelax=',
& ' /* balance SST relaxation on/off flag */')
#endif
CALL WRITE_0D_L( tempIsActiveTr, INDEX_NONE, 'tempIsActiveTr =',
& ' /* Temp. is a dynamically Active Tracer */')
CALL WRITE_0D_L( saltStepping, INDEX_NONE,
& 'saltStepping =', ' /* Salinity equation on/off flag */')
CALL WRITE_0D_L( saltAdvection, INDEX_NONE,
& 'saltAdvection =', ' /* Salinity advection on/off flag */')
CALL WRITE_0D_L( saltImplVertAdv,INDEX_NONE,'saltImplVertAdv =',
& ' /* Sali. implicit vert. advection on/off */')
CALL WRITE_0D_L( saltForcing, INDEX_NONE,
& 'saltForcing =', ' /* Salinity forcing on/off flag */')
#ifdef ALLOW_BALANCE_FLUXES
CALL WRITE_0D_L( balanceQnet, INDEX_NONE, 'balanceEmPmR =',
& ' /* balance net fresh-water flux on/off flag */')
#endif
CALL WRITE_0D_L( doSaltClimRelax, INDEX_NONE,
& 'doSaltClimRelax =', ' /* apply SSS relaxation on/off flag */')
#ifdef ALLOW_BALANCE_RELAX
CALL WRITE_0D_L( balanceSaltClimRelax, INDEX_NONE,
& 'balanceSaltClimRelax=',
& ' /* balance SSS relaxation on/off flag */')
#endif
CALL WRITE_0D_L( saltIsActiveTr, INDEX_NONE, 'saltIsActiveTr =',
& ' /* Salt is a dynamically Active Tracer */')
CALL WRITE_0D_I( readBinaryPrec, INDEX_NONE, ' readBinaryPrec =',
& ' /* Precision used for reading binary files */')
CALL WRITE_0D_I(writeBinaryPrec, INDEX_NONE, 'writeBinaryPrec =',
& ' /* Precision used for writing binary files */')
C---
c CALL WRITE_0D_I(rwSuffixType, INDEX_NONE, 'rwSuffixType =',
c & ' /* Select format of mds file suffix */')
WRITE(msgBuf,'(2A)') ' rwSuffixType = ',
& ' /* select format of mds file suffix */'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
buffI(1) = rwSuffixType
CALL PRINT_LIST_I( buffI, 1, 1, INDEX_NONE,
& .FALSE., .TRUE., ioUnit )
WRITE(msgBuf,'(2A)') ' = 0 : myIter (I10.10) ;',
& ' = 1 : 100*myTime (100th sec) ;'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(2A)') ' = 2 : myTime (seconds);',
& ' = 3 : myTime/360 (10th of hr);'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(2A)') ' = 4 : myTime/3600 (hours)'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
CALL PRINT_MESSAGE(endList, ioUnit, SQUEEZE_RIGHT, myThid )
C---
CALL WRITE_0D_L( globalFiles, INDEX_NONE,
& ' globalFiles =',' /* write "global" (=not per tile) files */')
CALL WRITE_0D_L( useSingleCpuIO, INDEX_NONE,
& ' useSingleCpuIO =', ' /* only master MPI process does I/O */')
CALL WRITE_0D_L( useSingleCpuInput, INDEX_NONE,
& ' useSingleCpuInput =', ' /* only master process reads input */')
WRITE(msgBuf,'(2A)') '/* debLev[*] :',
& ' level of debug & auxiliary message printing */'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A,I3,A)') 'debLevZero =', debLevZero,
& ' ; /* level of disabled aux. msg printing */'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A,I3,A)') ' debLevA =', debLevA,
& ' ; /* level of minimum aux. msg printing */'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A,I3,A)') ' debLevB =', debLevB,
& ' ; /* level of low aux. print (report read-file opening)*/'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A,I3,A)') ' debLevC =', debLevC,
& ' ; /* level of moderate debug prt (most pkgs debug msg) */'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A,I3,A)') ' debLevD =', debLevD,
& ' ; /* level of enhanced debug prt (add DEBUG_STATS prt) */'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A,I3,A)') ' debLevE =', debLevE,
& ' ; /* level of extensive debug printing */'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
CALL WRITE_0D_I( debugLevel, INDEX_NONE,
& 'debugLevel =', ' /* select debug printing level */')
CALL WRITE_0D_I( plotLevel, INDEX_NONE,
& ' plotLevel =', ' /* select PLOT_FIELD printing level */')
WRITE(msgBuf,'(A)') '// '
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A)')
& '// Elliptic solver(s) paramters ( PARM02 in namelist ) '
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A)') '// '
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
CALL WRITE_0D_I( cg2dMaxIters, INDEX_NONE,'cg2dMaxIters =',
&' /* Upper limit on 2d con. grad iterations */')
CALL WRITE_0D_I( cg2dChkResFreq, INDEX_NONE,'cg2dChkResFreq =',
&' /* 2d con. grad convergence test frequency */')
CALL WRITE_0D_I( cg2dUseMinResSol, INDEX_NONE,
& 'cg2dUseMinResSol=',
& ' /* use cg2d last-iter(=0) / min-resid.(=1) solution */')
CALL WRITE_0D_RL( cg2dTargetResidual, INDEX_NONE,
& 'cg2dTargetResidual =',
&' /* 2d con. grad target residual */')
CALL WRITE_0D_RL( cg2dTargetResWunit, INDEX_NONE,
& 'cg2dTargetResWunit =',
&' /* CG2d target residual [W units] */')
CALL WRITE_0D_I( cg2dPreCondFreq, INDEX_NONE,'cg2dPreCondFreq =',
&' /* Freq. for updating cg2d preconditioner */')
CALL WRITE_0D_L( useSRCGSolver, INDEX_NONE,
& 'useSRCGSolver =', ' /* use single reduction CG solver(s) */')
CALL WRITE_0D_I( printResidualFreq, INDEX_NONE,
& 'printResidualFreq =', ' /* Freq. for printing CG residual */')
WRITE(msgBuf,'(A)') '// '
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A)')
& '// Time stepping paramters ( PARM03 in namelist ) '
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A)') '// '
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
CALL WRITE_0D_RL( deltaTMom, INDEX_NONE,'deltaTMom =',
&' /* Momentum equation timestep ( s ) */')
CALL WRITE_0D_RL( deltaTFreeSurf,INDEX_NONE,'deltaTFreeSurf =',
& ' /* FreeSurface equation timestep ( s ) */')
CALL WRITE_1D_RL( dTtracerLev, Nr, INDEX_K, 'dTtracerLev =',
& ' /* Tracer equation timestep ( s ) */')
CALL WRITE_0D_RL( deltaTClock, INDEX_NONE,'deltaTClock =',
&' /* Model clock timestep ( s ) */')
CALL WRITE_0D_RL( cAdjFreq, INDEX_NONE,'cAdjFreq =',
&' /* Convective adjustment interval ( s ) */')
CALL WRITE_0D_I( momForcingOutAB, INDEX_NONE, 'momForcingOutAB =',
& ' /* =1: take Momentum Forcing out of Adams-Bash. stepping */')
CALL WRITE_0D_I( tracForcingOutAB, INDEX_NONE,
& 'tracForcingOutAB =',
& ' /* =1: take T,S,pTr Forcing out of Adams-Bash. stepping */')
CALL WRITE_0D_L( momDissip_In_AB,INDEX_NONE,'momDissip_In_AB =',
& ' /* put Dissipation Tendency in Adams-Bash. stepping */')
CALL WRITE_0D_L( doAB_onGtGs, INDEX_NONE, 'doAB_onGtGs =',
& ' /* apply AB on Tendencies (rather than on T,S)*/')
CALL WRITE_0D_RL( abEps, INDEX_NONE,'abEps =',
&' /* Adams-Bashforth-2 stabilizing weight */')
#ifdef ALLOW_ADAMSBASHFORTH_3
CALL WRITE_0D_RL( alph_AB, INDEX_NONE,'alph_AB =',
&' /* Adams-Bashforth-3 primary factor */')
CALL WRITE_0D_RL( beta_AB, INDEX_NONE,'beta_AB =',
&' /* Adams-Bashforth-3 secondary factor */')
CALL WRITE_0D_L( startFromPickupAB2, INDEX_NONE,
& 'startFromPickupAB2=',' /* start from AB-2 pickup */')
#endif
CALL WRITE_0D_L( applyExchUV_early, INDEX_NONE,
& 'applyExchUV_early =',
& ' /* Apply EXCH to U,V earlier in time-step */')
IF (useCDscheme) THEN
CALL WRITE_0D_RL( tauCD, INDEX_NONE,'tauCD =',
&' /* CD coupling time-scale ( s ) */')
CALL WRITE_0D_RL( rCD, INDEX_NONE,'rCD =',
&' /* Normalised CD coupling parameter */')
CALL WRITE_0D_RL( epsAB_CD, INDEX_NONE,'epsAB_CD =',
& ' /* AB-2 stabilizing weight for CD-scheme*/')
ENDIF
i = ILNBLNK(pickupSuff)
IF ( i.GT.0 ) THEN
CALL WRITE_0D_C( pickupSuff, 0, INDEX_NONE,
& 'pickupSuff =', ' /* Suffix of pickup-file to restart from */')
ENDIF
CALL WRITE_0D_L( pickupStrictlyMatch, INDEX_NONE,
& 'pickupStrictlyMatch=',
& ' /* stop if pickup do not strictly match */')
CALL WRITE_0D_I( nIter0, INDEX_NONE, 'nIter0 =',
&' /* Run starting timestep number */')
CALL WRITE_0D_I( nTimeSteps, INDEX_NONE,'nTimeSteps =',
& ' /* Number of timesteps */')
CALL WRITE_0D_I( nEndIter, INDEX_NONE, 'nEndIter =',
&' /* Run ending timestep number */')
CALL WRITE_0D_RL( baseTime, INDEX_NONE,'baseTime =',
&' /* Model base time ( s ) */')
CALL WRITE_0D_RL( startTime, INDEX_NONE,'startTime =',
& ' /* Run start time ( s ) */')
CALL WRITE_0D_RL( endTime, INDEX_NONE,'endTime =',
&' /* Integration ending time ( s ) */')
CALL WRITE_0D_RL( pChkPtFreq, INDEX_NONE,'pChkPtFreq =',
& ' /* Permanent restart/pickup file interval ( s ) */')
CALL WRITE_0D_RL( chkPtFreq, INDEX_NONE,'chkPtFreq =',
& ' /* Rolling restart/pickup file interval ( s ) */')
CALL WRITE_0D_L(pickup_write_mdsio,INDEX_NONE,
& 'pickup_write_mdsio =', ' /* Model IO flag. */')
CALL WRITE_0D_L(pickup_read_mdsio,INDEX_NONE,
& 'pickup_read_mdsio =', ' /* Model IO flag. */')
#ifdef ALLOW_MNC
CALL WRITE_0D_L(pickup_write_mnc,INDEX_NONE,
& 'pickup_write_mnc =', ' /* Model IO flag. */')
CALL WRITE_0D_L(pickup_read_mnc,INDEX_NONE,
& 'pickup_read_mnc =', ' /* Model IO flag. */')
#endif
c CALL WRITE_0D_L(pickup_write_immed,INDEX_NONE,
c & 'pickup_write_immed =',' /* Model IO flag. */')
CALL WRITE_0D_L(writePickupAtEnd,INDEX_NONE,
& 'writePickupAtEnd =',' /* Model IO flag. */')
CALL WRITE_0D_RL( dumpFreq, INDEX_NONE,'dumpFreq =',
&' /* Model state write out interval ( s ). */')
CALL WRITE_0D_L(dumpInitAndLast,INDEX_NONE,'dumpInitAndLast=',
& ' /* write out Initial & Last iter. model state */')
CALL WRITE_0D_L(snapshot_mdsio,INDEX_NONE,
& 'snapshot_mdsio =', ' /* Model IO flag. */')
#ifdef ALLOW_MNC
CALL WRITE_0D_L(snapshot_mnc,INDEX_NONE,
& 'snapshot_mnc =', ' /* Model IO flag. */')
#endif
CALL WRITE_0D_RL( monitorFreq, INDEX_NONE,'monitorFreq =',
&' /* Monitor output interval ( s ). */')
CALL WRITE_0D_I( monitorSelect, INDEX_NONE, 'monitorSelect =',
& ' /* select group of variables to monitor */')
CALL WRITE_0D_L(monitor_stdio,INDEX_NONE,
& 'monitor_stdio =', ' /* Model IO flag. */')
#ifdef ALLOW_MNC
CALL WRITE_0D_L(monitor_mnc,INDEX_NONE,
& 'monitor_mnc =', ' /* Model IO flag. */')
#endif
CALL WRITE_0D_RL( externForcingPeriod, INDEX_NONE,
& 'externForcingPeriod =', ' /* forcing period (s) */')
CALL WRITE_0D_RL( externForcingCycle, INDEX_NONE,
& 'externForcingCycle =', ' /* period of the cyle (s). */')
CALL WRITE_0D_RL( tauThetaClimRelax, INDEX_NONE,
& 'tauThetaClimRelax =', ' /* relaxation time scale (s) */')
CALL WRITE_0D_RL( tauSaltClimRelax, INDEX_NONE,
& 'tauSaltClimRelax =', ' /* relaxation time scale (s) */')
CALL WRITE_0D_RL( latBandClimRelax, INDEX_NONE,
& 'latBandClimRelax =', ' /* max. Lat. where relaxation */')
WRITE(msgBuf,'(A)') '// '
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A)')
& '// Gridding paramters ( PARM04 in namelist ) '
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A)') '// '
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
CALL WRITE_0D_L( usingCartesianGrid, INDEX_NONE,
& 'usingCartesianGrid =',
& ' /* Cartesian coordinates flag ( True/False ) */')
CALL WRITE_0D_L( usingCylindricalGrid, INDEX_NONE,
& 'usingCylindricalGrid =',
& ' /* Cylindrical coordinates flag ( True/False ) */')
CALL WRITE_0D_L( usingSphericalPolarGrid, INDEX_NONE,
& 'usingSphericalPolarGrid =',
& ' /* Spherical coordinates flag ( True/False ) */')
CALL WRITE_0D_L( usingCurvilinearGrid, INDEX_NONE,
& 'usingCurvilinearGrid =',
& ' /* Curvilinear coordinates flag ( True/False ) */')
CALL WRITE_0D_L( useMin4hFacEdges, INDEX_NONE,
& 'useMin4hFacEdges =',
& ' /* set hFacW,S as minimum of adjacent hFacC factor */')
CALL WRITE_0D_L( interViscAr_pCell, INDEX_NONE,
& 'interViscAr_pCell =',
& ' /* account for partial-cell in interior vert. viscosity */')
CALL WRITE_0D_L( interDiffKr_pCell, INDEX_NONE,
& 'interDiffKr_pCell =',
& ' /* account for partial-cell in interior vert. diffusion */')
CALL WRITE_0D_I( pCellMix_select, INDEX_NONE,
& 'pCellMix_select =',
& ' /* option to enhance mixing near surface & bottom */')
IF ( pCellMix_select.NE.0 ) THEN
CALL WRITE_0D_RL( pCellMix_maxFac, INDEX_NONE,
& 'pCellMix_maxFac =', ' /* maximum enhanced mixing factor */')
CALL WRITE_0D_RL( pCellMix_delR, INDEX_NONE, 'pCellMix_delR =',
& ' /* thickness criteria for too thin partial-cell ( '
& //rUnits//' ) */')
CALL WRITE_1D_RL( pCellMix_viscAr, Nr, INDEX_K,
& 'pCellMix_viscAr = ',
& ' /* vertical viscosity for too thin partial-cell */')
CALL WRITE_1D_RL( pCellMix_diffKr, Nr, INDEX_K,
& 'pCellMix_diffKr = ',
& ' /* vertical diffusivity for too thin partial-cell */')
ENDIF
CALL WRITE_0D_I( selectSigmaCoord, INDEX_NONE,
& 'selectSigmaCoord =',
& ' /* Hybrid-Sigma Vert. Coordinate option */')
CALL WRITE_0D_RL( rSigmaBnd, INDEX_NONE, 'rSigmaBnd =',
& ' /* r/sigma transition ( units of r == '//rUnits//' ) */')
CALL WRITE_0D_RL( rkSign, INDEX_NONE,'rkSign =',
&' /* index orientation relative to vertical coordinate */')
CALL WRITE_0D_RL( gravitySign, INDEX_NONE,'gravitySign =',
& ' /* gravity orientation relative to vertical coordinate */')
CALL WRITE_0D_RL( seaLev_Z, INDEX_NONE, 'seaLev_Z =',
& ' /* reference height of sea-level [m] */')
IF ( usingZCoords ) THEN
CALL WRITE_0D_RL( top_Pres, INDEX_NONE, 'top_Pres =',
& ' /* reference pressure at the top [Pa] */')
CALL WRITE_0D_RL( mass2rUnit, INDEX_NONE,'mass2rUnit =',
& ' /* convert mass per unit area [kg/m2] to r-units [m] */')
CALL WRITE_0D_RL( rUnit2mass, INDEX_NONE,'rUnit2mass =',
& ' /* convert r-units [m] to mass per unit area [kg/m2] */')
ENDIF
IF ( usingPCoords ) THEN
CALL WRITE_0D_RL( top_Pres, INDEX_NONE, 'top_Pres =',
& ' /* pressure at the top (r-axis origin) [Pa] */')
CALL WRITE_0D_RL( mass2rUnit, INDEX_NONE,'mass2rUnit =',
& ' /* convert mass per unit area [kg/m2] to r-units [Pa] */')
CALL WRITE_0D_RL( rUnit2mass, INDEX_NONE,'rUnit2mass =',
& ' /* convert r-units [Pa] to mass per unit area [kg/m2] */')
ENDIF
CALL WRITE_COPY1D_RS( bufRL, drC,Nr+1,INDEX_K, 'drC = ',
&' /* C spacing ( units of r ) */')
CALL WRITE_COPY1D_RS( bufRL, drF, Nr, INDEX_K, 'drF = ',
&' /* W spacing ( units of r ) */')
IF ( selectSigmaCoord.NE.0 ) THEN
CALL WRITE_COPY1D_RS( bufRL,dAHybSigF,Nr,INDEX_K,'dAHybSigF =',
& ' /* vertical increment of Hybrid-sigma Coeff. (-) */')
CALL WRITE_COPY1D_RS( bufRL,dBHybSigF,Nr,INDEX_K,'dBHybSigF =',
& ' /* vertical increment of Hybrid-sigma Coeff. (-) */')
ENDIF
IF ( usingCurvilinearGrid ) THEN
CALL WRITE_0D_RL( radius_fromHorizGrid, INDEX_NONE,
& 'radius_fromHorizGrid = ',
& '/* sphere Radius of input horiz. grid */')
ELSE
CALL WRITE_1D_RL( delX, gridNx, INDEX_I, 'delX = ',
& ' /* U spacing ( m - cartesian, degrees - spherical ) */')
CALL WRITE_1D_RL( delY, gridNy, INDEX_J, 'delY = ',
& ' /* V spacing ( m - cartesian, degrees - spherical ) */')
CALL WRITE_0D_RL( xgOrigin, INDEX_NONE,'xgOrigin = ',
& '/* X-axis origin of West edge (cartesian: m, lat-lon: deg) */')
CALL WRITE_0D_RL( ygOrigin, INDEX_NONE,'ygOrigin = ',
& '/* Y-axis origin of South edge (cartesian: m, lat-lon: deg) */')
ENDIF
CALL WRITE_0D_RL( rSphere, INDEX_NONE,'rSphere = ',
& ' /* Radius ( ignored - cartesian, m - spherical ) */')
CALL WRITE_0D_L(deepAtmosphere,INDEX_NONE, 'deepAtmosphere =',
& ' /* Deep/Shallow Atmosphere flag (True/False) */')
coordLine = 1
tileLine = 1
CALL WRITE_XY_XLINE_RS( xC, coordLine, tileLine, 'xC',
I ': P-point X coord ( deg. or m if cartesian)')
CALL WRITE_XY_YLINE_RS( yC, coordLine, tileLine, 'yC',
I ': P-point Y coord ( deg. or m if cartesian)')
CALL WRITE_COPY1D_RS( bufRL, rC, Nr, INDEX_K, 'rcoord =',
& ' /* P-point R coordinate ( units of r ) */')
CALL WRITE_COPY1D_RS( bufRL, rF,Nr+1,INDEX_K, 'rF = ',
&' /* W-Interf. R coordinate ( units of r ) */')
IF ( selectSigmaCoord.NE.0 ) THEN
CALL WRITE_COPY1D_RS(bufRL,aHybSigmF,Nr+1,INDEX_K,'aHybSigmF =',
& ' /* Hybrid-sigma vert. Coord coeff. @ W-Interface (-) */')
CALL WRITE_COPY1D_RS(bufRL,bHybSigmF,Nr+1,INDEX_K,'bHybSigmF =',
& ' /* Hybrid-sigma vert. Coord coeff. @ W-Interface (-) */')
ENDIF
CALL WRITE_1D_RL( deepFacC, Nr, INDEX_K, 'deepFacC = ',
& ' /* deep-model grid factor @ cell-Center (-) */')
CALL WRITE_1D_RL( deepFacF, Nr+1, INDEX_K, 'deepFacF = ',
& ' /* deep-model grid factor @ W-Interface (-) */')
CALL WRITE_1D_RL(rVel2wUnit,Nr+1, INDEX_K,'rVel2wUnit =',
& ' /* convert units: rVel -> wSpeed (=1 if z-coord)*/')
CALL WRITE_1D_RL(wUnit2rVel,Nr+1, INDEX_K,'wUnit2rVel =',
& ' /* convert units: wSpeed -> rVel (=1 if z-coord)*/')
CALL WRITE_1D_RL( dBdrRef, Nr, INDEX_K, 'dBdrRef =',
& ' /* Vertical grad. of reference buoyancy [(m/s/r)^2] */')
CALL WRITE_0D_L( rotateGrid, INDEX_NONE,
& 'rotateGrid =',' /* use rotated grid ( True/False ) */')
CALL WRITE_0D_RL( phiEuler, INDEX_NONE,'phiEuler =',
&' /* Euler angle, rotation about original z-coordinate [rad] */')
CALL WRITE_0D_RL( thetaEuler, INDEX_NONE,'thetaEuler =',
& ' /* Euler angle, rotation about new x-coordinate [rad] */')
CALL WRITE_0D_RL( psiEuler, INDEX_NONE,'psiEuler =',
& ' /* Euler angle, rotation about new z-coordinate [rad] */')
C Grid along selected grid lines
coordLine = 1
tileLine = 1
CALL WRITE_XY_XLINE_RS( dxF, coordLine, tileLine, 'dxF',
I '( units: m )' )
CALL WRITE_XY_YLINE_RS( dxF, coordLine, tileLine, 'dxF',
I '( units: m )' )
CALL WRITE_XY_XLINE_RS( dyF, coordLine, tileLine, 'dyF',
I '( units: m )' )
CALL WRITE_XY_YLINE_RS( dyF, coordLine, tileLine, 'dyF',
I '( units: m )' )
CALL WRITE_XY_XLINE_RS( dxG, coordLine, tileLine, 'dxG',
I '( units: m )' )
CALL WRITE_XY_YLINE_RS( dxG, coordLine, tileLine, 'dxG',
I '( units: m )' )
CALL WRITE_XY_XLINE_RS( dyG, coordLine, tileLine, 'dyG',
I '( units: m )' )
CALL WRITE_XY_YLINE_RS( dyG, coordLine, tileLine, 'dyG',
I '( units: m )' )
CALL WRITE_XY_XLINE_RS( dxC, coordLine, tileLine, 'dxC',
I '( units: m )' )
CALL WRITE_XY_YLINE_RS( dxC, coordLine, tileLine, 'dxC',
I '( units: m )' )
CALL WRITE_XY_XLINE_RS( dyC, coordLine, tileLine, 'dyC',
I '( units: m )' )
CALL WRITE_XY_YLINE_RS( dyC, coordLine, tileLine, 'dyC',
I '( units: m )' )
CALL WRITE_XY_XLINE_RS( dxV, coordLine, tileLine, 'dxV',
I '( units: m )' )
CALL WRITE_XY_YLINE_RS( dxV, coordLine, tileLine, 'dxV',
I '( units: m )' )
CALL WRITE_XY_XLINE_RS( dyU, coordLine, tileLine, 'dyU',
I '( units: m )' )
CALL WRITE_XY_YLINE_RS( dyU, coordLine, tileLine, 'dyU',
I '( units: m )' )
CALL WRITE_XY_XLINE_RS( rA , coordLine, tileLine, 'rA ',
I '( units: m^2 )' )
CALL WRITE_XY_YLINE_RS( rA , coordLine, tileLine, 'rA ',
I '( units: m^2 )' )
CALL WRITE_XY_XLINE_RS( rAw, coordLine, tileLine, 'rAw',
I '( units: m^2 )' )
CALL WRITE_XY_YLINE_RS( rAw, coordLine, tileLine, 'rAw',
I '( units: m^2 )' )
CALL WRITE_XY_XLINE_RS( rAs, coordLine, tileLine, 'rAs',
I '( units: m^2 )' )
CALL WRITE_XY_YLINE_RS( rAs, coordLine, tileLine, 'rAs',
I '( units: m^2 )' )
CALL WRITE_0D_RL( globalArea, INDEX_NONE, 'globalArea =',
& ' /* Integrated horizontal Area (m^2) */')
IF ( useCubedSphereExchange ) THEN
CALL WRITE_0D_L( hasWetCSCorners,INDEX_NONE,'hasWetCSCorners =',
& ' /* Domain contains CS corners (True/False) */')
ENDIF
i = ILNBLNK(the_run_name)
IF ( i.GT.0 ) THEN
CALL WRITE_0D_C( the_run_name, i, INDEX_NONE,
& 'the_run_name = ', '/* Name of this simulation */' )
ENDIF
WRITE(msgBuf,'(A)')
&'// ======================================================='
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A)') '// End of Model config. summary'
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A)')
&'// ======================================================='
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
WRITE(msgBuf,'(A)') ' '
CALL PRINT_MESSAGE( msgBuf, ioUnit, SQUEEZE_RIGHT, myThid )
_END_MASTER(myThid)
_BARRIER
RETURN
END