Home Contact Us Site Map  
 
       
    next up previous contents
Next: 3.12.3 Experiment Configuration Up: 3.12 Global Ocean MITgcm Previous: 3.12.1 Overview   Contents

Subsections

3.12.2 Discrete Numerical Configuration

The model is configured in hydrostatic form. The domain is discretised with a uniform grid spacing in latitude and longitude on the sphere $ \Delta \phi=\Delta \lambda=4^{\circ}$ , so that there are ninety grid cells in the zonal and forty in the meridional direction. The internal model coordinate variables $ x$ and $ y$ are initialized according to

$\displaystyle x=r\cos(\phi),~\Delta x$ $\displaystyle =$ $\displaystyle r\cos(\Delta \phi)$ (3.35)
$\displaystyle y=r\lambda,~\Delta y$ $\displaystyle =$ $\displaystyle r\Delta \lambda$ (3.36)

Arctic polar regions are not included in this experiment. Meridionally the model extends from $ 80^{\circ}{\rm S}$ to $ 80^{\circ}{\rm N}$ . Vertically the model is configured with fifteen layers with the following thicknesses: $ \Delta z_{1} = 50\,{\rm m},$
$ \Delta z_{2} = 70\,{\rm m},\,
\Delta z_{3} = 100\,{\rm m},\,
\Delta z_{4} = ...
...= 240\,{\rm m},\,
\Delta z_{7} = 290\,{\rm m},\,
\Delta z_{8} = 340\,{\rm m},$
$ \Delta z_{9} = 390\,{\rm m},\,
\Delta z_{10}= 440\,{\rm m},\,
\Delta z_{11}=...
...}= 590\,{\rm m},\,
\Delta z_{14}= 640\,{\rm m},\,
\Delta z_{15}= 690\,{\rm m}$
(here the numeric subscript indicates the model level index number, $ {\tt k}$ ) to give a total depth, $ H$ , of $ -5200{\rm m}$ . The implicit free surface form of the pressure equation described in Marshall et al. [1997b] is employed. A Laplacian operator, $ \nabla^2$ , provides viscous dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.

Wind-stress forcing is added to the momentum equations in (3.37) for both the zonal flow, $ u$ and the meridional flow $ v$ , according to equations (3.31) and (3.32). Thermodynamic forcing inputs are added to the equations in (3.37) for potential temperature, $ \theta $ , and salinity, $ S$ , according to equations (3.33) and (3.34). This produces a set of equations solved in this configuration as follows:


$\displaystyle \frac{Du}{Dt} - fv +
\frac{1}{\rho}\frac{\partial p^{'}}{\partia...
...{h}\nabla_{h}u -
\frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}$ $\displaystyle =$ \begin{displaymath}\begin{cases}
{\cal F}_u & \text{(surface)} \\
0 & \text{(interior)}
\end{cases}\end{displaymath} (3.37)
$\displaystyle \frac{Dv}{Dt} + fu +
\frac{1}{\rho}\frac{\partial p^{'}}{\partia...
...{h}\nabla_{h}v -
\frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}$ $\displaystyle =$ \begin{displaymath}\begin{cases}
{\cal F}_v & \text{(surface)} \\
0 & \text{(interior)}
\end{cases}\end{displaymath} (3.38)
$\displaystyle \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}$ $\displaystyle =$ 0 (3.39)
$\displaystyle \frac{D\theta}{Dt} -
\nabla_{h}\cdot K_{h}\nabla_{h}\theta
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}$ $\displaystyle =$ \begin{displaymath}\begin{cases}
{\cal F}_\theta & \text{(surface)} \\
0 & \text{(interior)}
\end{cases}\end{displaymath} (3.40)
$\displaystyle \frac{D s}{Dt} -
\nabla_{h}\cdot K_{h}\nabla_{h}s
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}$ $\displaystyle =$ \begin{displaymath}\begin{cases}
{\cal F}_s & \text{(surface)} \\
0 & \text{(interior)}
\end{cases}\end{displaymath} (3.41)
$\displaystyle g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz$ $\displaystyle =$ $\displaystyle p^{'}$ (3.42)

where $ u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and $ v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$ are the zonal and meridional components of the flow vector, $ \vec{u}$ , on the sphere. As described in MITgcm Numerical Solution Procedure 2, the time evolution of potential temperature, $ \theta $ , equation is solved prognostically. The total pressure, $ p$ , is diagnosed by summing pressure due to surface elevation $ \eta $ and the hydrostatic pressure.

3.12.2.1 Numerical Stability Criteria

The Laplacian dissipation coefficient, $ A_{h}$ , is set to $ 5 \times 10^5 m s^{-1}$ . This value is chosen to yield a Munk layer width [Adcroft, 1995],

    $\displaystyle M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}$ (3.43)

of $ \approx 600$ km. This is greater than the model resolution in low-latitudes, $ \Delta x \approx 400{\rm km}$ , ensuring that the frictional boundary layer is adequately resolved.

The model is stepped forward with a time step $ \Delta
t_{\theta}=24~{\rm hours}$ for thermodynamic variables and $ \Delta
t_{v}=30~{\rm minutes}$ for momentum terms. With this time step, the stability parameter to the horizontal Laplacian friction [Adcroft, 1995]

    $\displaystyle S_{l} = 4 \frac{A_{h} \Delta t_{v}}{{\Delta x}^2}$ (3.44)

evaluates to 0.6 at a latitude of $ \phi=80^{\circ}$ , which is above the 0.3 upper limit for stability, but the zonal grid spacing $ \Delta x$ is smallest at $ \phi=80^{\circ}$ where $ \Delta
x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$ and the stability criterion is already met 1 grid cell equatorwards (at $ \phi=76^{\circ}$ ).

The vertical dissipation coefficient, $ A_{z}$ , is set to $ 1\times10^{-3} {\rm m}^2{\rm s}^{-1}$ . The associated stability limit

    $\displaystyle S_{l} = 4 \frac{A_{z} \Delta t_{v}}{{\Delta z}^2}$ (3.45)

evaluates to $ 0.0029$ for the smallest model level spacing ( $ \Delta z_{1}=50{\rm m}$ ) which is well below the upper stability limit.

The numerical stability for inertial oscillations [Adcroft, 1995]


    $\displaystyle S_{i} = f^{2} {\Delta t_v}^2$ (3.46)

evaluates to $ 0.07$ for $ f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$ , which is below the $ S_{i} < 1$ upper limit for stability.

The advective CFL [Adcroft, 1995] for a extreme maximum horizontal flow speed of $ \vert \vec{u} \vert = 2 ms^{-1}$


    $\displaystyle S_{a} = \frac{\vert \vec{u} \vert \Delta t_{v}}{ \Delta x}$ (3.47)

evaluates to $ 5 \times 10^{-2}$ . This is well below the stability limit of 0.5.

The stability parameter for internal gravity waves propagating with a maximum speed of $ c_{g}=10~{\rm ms}^{-1}$ [Adcroft, 1995]


    $\displaystyle S_{c} = \frac{c_{g} \Delta t_{v}}{ \Delta x}$ (3.48)

evaluates to $ 2.3 \times 10^{-1}$ . This is close to the linear stability limit of 0.5.


next up previous contents
Next: 3.12.3 Experiment Configuration Up: 3.12 Global Ocean MITgcm Previous: 3.12.1 Overview   Contents
mitgcm-support@mitgcm.org
Copyright © 2006 Massachusetts Institute of Technology Last update 2018-01-23