Home Contact Us Site Map  
 
       
    next up previous contents
Next: 3.13.2 Discrete Numerical Configuration Up: 3.13 P coordinate Global Previous: 3.13 P coordinate Global   Contents

3.13.1 Overview

The model is forced with climatological wind stress data from Trenberth Trenberth et al. [1990] and surface flux data from Jiang et al. Jiang et al. [1999]. Climatological data from Levitus Levitus and T.P.Boyer [1994b] is used to initialize the model hydrography. Levitus seasonal climatology data is also used throughout the calculation to provide additional air-sea fluxes. These fluxes are combined with the Jiang climatological estimates of surface heat flux, resulting in a mixed boundary condition of the style described in Haney Haney [1971]. Altogether, this yields the following forcing applied in the model surface layer.


$\displaystyle {\cal F}_{u}$ $\displaystyle =$ $\displaystyle g\frac{\tau_{x}}{\Delta p_{s}}$ (3.51)
$\displaystyle {\cal F}_{v}$ $\displaystyle =$ $\displaystyle g\frac{\tau_{y}}{\Delta p_{s}}$ (3.52)
$\displaystyle {\cal F}_{\theta}$ $\displaystyle =$ $\displaystyle - g\lambda_{\theta} ( \theta - \theta^{\ast} )
- \frac{1}{C_{p} \Delta p_{s}}{\cal Q}$ (3.53)
$\displaystyle {\cal F}_{s}$ $\displaystyle =$ $\displaystyle + g\rho_{FW}\frac{S}{\rho\Delta p_{s}}({\cal E} - {\cal P} - {\cal R})$ (3.54)

where $ {\cal F}_{u}$ , $ {\cal F}_{v}$ , $ {\cal F}_{\theta}$ , $ {\cal F}_{s}$ are the forcing terms in the zonal and meridional momentum and in the potential temperature and salinity equations respectively. The term $ \Delta p_{s}$ represents the top ocean layer thickness in Pa. It is used in conjunction with a reference density, $ \rho_{FW}$ (here set to $ 999.8\,{\rm kg\,m^{-3}}$ ), the surface salinity, $ S$ , and a specific heat capacity, $ C_{p}$ (here set to $ 4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$ ), to convert input dataset values into time tendencies of potential temperature (with units of $ ^{\circ}{\rm C}~{\rm s}^{-1}$ ), salinity (with units $ {\rm ppt}~s^{-1}$ ) and velocity (with units $ {\rm m}~{\rm s}^{-2}$ ). The externally supplied forcing fields used in this experiment are $ \tau_{x}$ , $ \tau_{y}$ , $ \theta^{\ast}$ , $ \cal{Q}$ and $ \cal{E}-\cal{P}-\cal{R}$ . The wind stress fields ($ \tau_x$ , $ \tau_y$ ) have units of $ {\rm N}~{\rm m}^{-2}$ . The temperature forcing fields ( $ \theta^{\ast}$ and $ Q$ ) have units of $ ^{\circ}{\rm C}$ and $ {\rm W}~{\rm m}^{-2}$ respectively. The salinity forcing fields ( $ \cal{E}-\cal{P}-\cal{R}$ ) has units of $ {\rm m}~{\rm s}^{-1}$ respectively. The source files and procedures for ingesting these data into the simulation are described in the experiment configuration discussion in section 3.12.3.


next up previous contents
Next: 3.13.2 Discrete Numerical Configuration Up: 3.13 P coordinate Global Previous: 3.13 P coordinate Global   Contents
mitgcm-support@mitgcm.org
Copyright © 2006 Massachusetts Institute of Technology Last update 2011-01-09