C $Header: /u/gcmpack/MITgcm/model/src/solve_for_pressure.F,v 1.46 2005/05/15 03:02:08 jmc Exp $ C $Name: $ #include "PACKAGES_CONFIG.h" #include "CPP_OPTIONS.h" CBOP C !ROUTINE: SOLVE_FOR_PRESSURE C !INTERFACE: SUBROUTINE SOLVE_FOR_PRESSURE(myTime, myIter, myThid) C !DESCRIPTION: \bv C *==========================================================* C | SUBROUTINE SOLVE_FOR_PRESSURE C | o Controls inversion of two and/or three-dimensional C | elliptic problems for the pressure field. C *==========================================================* C \ev C !USES: IMPLICIT NONE C == Global variables #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "DYNVARS.h" #ifdef ALLOW_CD_CODE #include "CD_CODE_VARS.h" #endif #include "GRID.h" #include "SURFACE.h" #include "FFIELDS.h" #ifdef ALLOW_NONHYDROSTATIC #include "SOLVE_FOR_PRESSURE3D.h" #include "GW.h" #endif #ifdef ALLOW_OBCS #include "OBCS.h" #endif #include "SOLVE_FOR_PRESSURE.h" C === Functions ==== LOGICAL DIFFERENT_MULTIPLE EXTERNAL C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C myTime - Current time in simulation C myIter - Current iteration number in simulation C myThid - Thread number for this instance of SOLVE_FOR_PRESSURE _RL myTime INTEGER myIter INTEGER myThid C !LOCAL VARIABLES: C == Local variables == INTEGER i,j,k,bi,bj _RS uf(1-Olx:sNx+Olx,1-Oly:sNy+Oly) _RS vf(1-Olx:sNx+Olx,1-Oly:sNy+Oly) _RL firstResidual,lastResidual _RL tmpFac INTEGER numIters CHARACTER*(MAX_LEN_MBUF) msgBuf CEOP #ifdef TIME_PER_TIMESTEP CCE107 common block for per timestep timing C !TIMING VARIABLES C == Timing variables == REAL*8 utnew, utold, stnew, stold, wtnew, wtold COMMON /timevars/ utnew, utold, stnew, stold, wtnew, wtold #endif C-- Save previous solution & Initialise Vector solution and source term : DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx #ifdef ALLOW_CD_CODE etaNm1(i,j,bi,bj) = etaN(i,j,bi,bj) #endif cg2d_x(i,j,bi,bj) = Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj) cg2d_b(i,j,bi,bj) = 0. ENDDO ENDDO IF (useRealFreshWaterFlux) THEN tmpFac = freeSurfFac*convertEmP2rUnit IF (exactConserv) & tmpFac = freeSurfFac*convertEmP2rUnit*implicDiv2DFlow DO j=1,sNy DO i=1,sNx cg2d_b(i,j,bi,bj) = & tmpFac*_rA(i,j,bi,bj)*EmPmR(i,j,bi,bj)/deltaTMom ENDDO ENDDO ENDIF ENDDO ENDDO DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO K=Nr,1,-1 DO j=1,sNy+1 DO i=1,sNx+1 uf(i,j) = _dyG(i,j,bi,bj) & *drF(k)*_hFacW(i,j,k,bi,bj) vf(i,j) = _dxG(i,j,bi,bj) & *drF(k)*_hFacS(i,j,k,bi,bj) ENDDO ENDDO CALL CALC_DIV_GHAT( I bi,bj,1,sNx,1,sNy,K, I uf,vf, U cg2d_b, I myThid) ENDDO ENDDO ENDDO C-- Add source term arising from w=d/dt (p_s + p_nh) DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) #ifdef ALLOW_NONHYDROSTATIC IF ( nonHydrostatic ) THEN DO j=1,sNy DO i=1,sNx cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj) & -freeSurfFac*_rA(i,j,bi,bj)/deltaTMom/deltaTfreesurf & *( etaN(i,j,bi,bj) & +phi_nh(i,j,1,bi,bj)*horiVertRatio/gravity ) cg3d_b(i,j,1,bi,bj) = cg3d_b(i,j,1,bi,bj) & -freeSurfFac*_rA(i,j,bi,bj)/deltaTMom/deltaTfreesurf & *( etaN(i,j,bi,bj) & +phi_nh(i,j,1,bi,bj)*horiVertRatio/gravity ) ENDDO ENDDO ELSEIF ( exactConserv ) THEN #else IF ( exactConserv ) THEN #endif /* ALLOW_NONHYDROSTATIC */ DO j=1,sNy DO i=1,sNx cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj) & -freeSurfFac*_rA(i,j,bi,bj)/deltaTMom/deltaTfreesurf & * etaH(i,j,bi,bj) ENDDO ENDDO ELSE DO j=1,sNy DO i=1,sNx cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj) & -freeSurfFac*_rA(i,j,bi,bj)/deltaTMom/deltaTfreesurf & * etaN(i,j,bi,bj) ENDDO ENDDO ENDIF #ifdef ALLOW_OBCS IF (useOBCS) THEN DO i=1,sNx C Northern boundary IF (OB_Jn(I,bi,bj).NE.0) THEN cg2d_b(I,OB_Jn(I,bi,bj),bi,bj)=0. cg2d_x(I,OB_Jn(I,bi,bj),bi,bj)=0. ENDIF C Southern boundary IF (OB_Js(I,bi,bj).NE.0) THEN cg2d_b(I,OB_Js(I,bi,bj),bi,bj)=0. cg2d_x(I,OB_Js(I,bi,bj),bi,bj)=0. ENDIF ENDDO DO j=1,sNy C Eastern boundary IF (OB_Ie(J,bi,bj).NE.0) THEN cg2d_b(OB_Ie(J,bi,bj),J,bi,bj)=0. cg2d_x(OB_Ie(J,bi,bj),J,bi,bj)=0. ENDIF C Western boundary IF (OB_Iw(J,bi,bj).NE.0) THEN cg2d_b(OB_Iw(J,bi,bj),J,bi,bj)=0. cg2d_x(OB_Iw(J,bi,bj),J,bi,bj)=0. ENDIF ENDDO ENDIF #endif ENDDO ENDDO #ifdef ALLOW_DEBUG IF ( debugLevel .GE. debLevB ) THEN CALL DEBUG_STATS_RL(1,cg2d_b,'cg2d_b (SOLVE_FOR_PRESSURE)', & myThid) ENDIF #endif C-- Find the surface pressure using a two-dimensional conjugate C-- gradient solver. C see CG2D.h for the interface to this routine. firstResidual=0. lastResidual=0. numIters=cg2dMaxIters CALL CG2D( U cg2d_b, U cg2d_x, O firstResidual, O lastResidual, U numIters, I myThid ) _EXCH_XY_R8(cg2d_x, myThid ) #ifdef ALLOW_DEBUG IF ( debugLevel .GE. debLevB ) THEN CALL DEBUG_STATS_RL(1,cg2d_x,'cg2d_x (SOLVE_FOR_PRESSURE)', & myThid) ENDIF #endif C- dump CG2D output at monitorFreq (to reduce size of STD-OUTPUT files) : IF ( DIFFERENT_MULTIPLE(monitorFreq,myTime,deltaTClock) & ) THEN IF ( debugLevel .GE. debLevA ) THEN _BEGIN_MASTER( myThid ) WRITE(msgBuf,'(A34,1PE24.14)') 'cg2d_init_res =',firstResidual CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) WRITE(msgBuf,'(A34,I6)') 'cg2d_iters =',numIters CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) WRITE(msgBuf,'(A34,1PE24.14)') 'cg2d_res =',lastResidual CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) _END_MASTER( myThid ) ENDIF ENDIF C-- Transfert the 2D-solution to "etaN" : DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx etaN(i,j,bi,bj) = recip_Bo(i,j,bi,bj)*cg2d_x(i,j,bi,bj) ENDDO ENDDO ENDDO ENDDO #ifdef ALLOW_NONHYDROSTATIC IF ( nonHydrostatic ) THEN C-- Solve for a three-dimensional pressure term (NH or IGW or both ). C see CG3D.h for the interface to this routine. DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO j=1,sNy+1 DO i=1,sNx+1 uf(i,j)=-_recip_dxC(i,j,bi,bj)* & (cg2d_x(i,j,bi,bj)-cg2d_x(i-1,j,bi,bj)) vf(i,j)=-_recip_dyC(i,j,bi,bj)* & (cg2d_x(i,j,bi,bj)-cg2d_x(i,j-1,bi,bj)) ENDDO ENDDO #ifdef ALLOW_OBCS IF (useOBCS) THEN DO i=1,sNx+1 C Northern boundary IF (OB_Jn(I,bi,bj).NE.0) THEN vf(I,OB_Jn(I,bi,bj))=0. ENDIF C Southern boundary IF (OB_Js(I,bi,bj).NE.0) THEN vf(I,OB_Js(I,bi,bj)+1)=0. ENDIF ENDDO DO j=1,sNy+1 C Eastern boundary IF (OB_Ie(J,bi,bj).NE.0) THEN uf(OB_Ie(J,bi,bj),J)=0. ENDIF C Western boundary IF (OB_Iw(J,bi,bj).NE.0) THEN uf(OB_Iw(J,bi,bj)+1,J)=0. ENDIF ENDDO ENDIF #endif K=1 DO j=1,sNy DO i=1,sNx cg3d_b(i,j,k,bi,bj) = cg3d_b(i,j,k,bi,bj) & +dRF(K)*dYG(i+1,j,bi,bj)*hFacW(i+1,j,k,bi,bj)*uf(i+1,j) & -dRF(K)*dYG( i ,j,bi,bj)*hFacW( i ,j,k,bi,bj)*uf( i ,j) & +dRF(K)*dXG(i,j+1,bi,bj)*hFacS(i,j+1,k,bi,bj)*vf(i,j+1) & -dRF(K)*dXG(i, j ,bi,bj)*hFacS(i, j ,k,bi,bj)*vf(i, j ) & +( freeSurfFac*etaN(i,j,bi,bj)/deltaTMom & -wVel(i,j,k+1,bi,bj) & )*_rA(i,j,bi,bj)/deltaTmom ENDDO ENDDO DO K=2,Nr-1 DO j=1,sNy DO i=1,sNx cg3d_b(i,j,k,bi,bj) = cg3d_b(i,j,k,bi,bj) & +dRF(K)*dYG(i+1,j,bi,bj)*hFacW(i+1,j,k,bi,bj)*uf(i+1,j) & -dRF(K)*dYG( i ,j,bi,bj)*hFacW( i ,j,k,bi,bj)*uf( i ,j) & +dRF(K)*dXG(i,j+1,bi,bj)*hFacS(i,j+1,k,bi,bj)*vf(i,j+1) & -dRF(K)*dXG(i, j ,bi,bj)*hFacS(i, j ,k,bi,bj)*vf(i, j ) & +( wVel(i,j,k ,bi,bj) & -wVel(i,j,k+1,bi,bj) & )*_rA(i,j,bi,bj)/deltaTmom ENDDO ENDDO ENDDO K=Nr DO j=1,sNy DO i=1,sNx cg3d_b(i,j,k,bi,bj) = cg3d_b(i,j,k,bi,bj) & +dRF(K)*dYG(i+1,j,bi,bj)*hFacW(i+1,j,k,bi,bj)*uf(i+1,j) & -dRF(K)*dYG( i ,j,bi,bj)*hFacW( i ,j,k,bi,bj)*uf( i ,j) & +dRF(K)*dXG(i,j+1,bi,bj)*hFacS(i,j+1,k,bi,bj)*vf(i,j+1) & -dRF(K)*dXG(i, j ,bi,bj)*hFacS(i, j ,k,bi,bj)*vf(i, j ) & +( wVel(i,j,k ,bi,bj) & )*_rA(i,j,bi,bj)/deltaTmom ENDDO ENDDO #ifdef ALLOW_OBCS IF (useOBCS) THEN DO K=1,Nr DO i=1,sNx C Northern boundary IF (OB_Jn(I,bi,bj).NE.0) THEN cg3d_b(I,OB_Jn(I,bi,bj),K,bi,bj)=0. ENDIF C Southern boundary IF (OB_Js(I,bi,bj).NE.0) THEN cg3d_b(I,OB_Js(I,bi,bj),K,bi,bj)=0. ENDIF ENDDO DO j=1,sNy C Eastern boundary IF (OB_Ie(J,bi,bj).NE.0) THEN cg3d_b(OB_Ie(J,bi,bj),J,K,bi,bj)=0. ENDIF C Western boundary IF (OB_Iw(J,bi,bj).NE.0) THEN cg3d_b(OB_Iw(J,bi,bj),J,K,bi,bj)=0. ENDIF ENDDO ENDDO ENDIF #endif ENDDO ! bi ENDDO ! bj firstResidual=0. lastResidual=0. numIters=cg2dMaxIters CALL CG3D( U cg3d_b, U phi_nh, O firstResidual, O lastResidual, U numIters, I myThid ) _EXCH_XYZ_R8(phi_nh, myThid ) IF ( DIFFERENT_MULTIPLE(monitorFreq,myTime,deltaTClock) & ) THEN IF ( debugLevel .GE. debLevA ) THEN _BEGIN_MASTER( myThid ) WRITE(msgBuf,'(A34,1PE24.14)') 'cg3d_init_res =',firstResidual CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) WRITE(msgBuf,'(A34,I6)') 'cg3d_iters =',numIters CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) WRITE(msgBuf,'(A34,1PE24.14)') 'cg3d_res =',lastResidual CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) _END_MASTER( myThid ) ENDIF ENDIF ENDIF #endif #ifdef TIME_PER_TIMESTEP CCE107 Time per timestep information _BEGIN_MASTER( myThid ) CALL TIMER_GET_TIME( utnew, stnew, wtnew ) C Only output timing information after the 1st timestep IF ( wtold .NE. 0.0D0 ) THEN WRITE(msgBuf,'(A34,3F10.6)') $ 'User, system and wallclock time:', utnew - utold, $ stnew - stold, wtnew - wtold CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) ENDIF utold = utnew stold = stnew wtold = wtnew _END_MASTER( myThid ) #endif RETURN END
#ifdef TIME_PER_TIMESTEP CCE107 Initialization of common block for per timestep timing BLOCK DATA settimers C !TIMING VARIABLES C == Timing variables == REAL*8 utnew, utold, stnew, stold, wtnew, wtold COMMON /timevars/ utnew, utold, stnew, stold, wtnew, wtold DATA utnew, utold, stnew, stold, wtnew, wtold /6*0.0D0/ END
#endif