Home Contact Us Site Map  
 
       
    next up previous contents
Next: 3.13.3 Discrete numerical configuration Up: 3.13 Surface Driven Convection Previous: 3.13.1 Overview   Contents


3.13.2 Equations solved

The model is configured in nonhydrostatic form, that is, all terms in the Navier Stokes equations are retained and the pressure field is found, subject to appropriate bounday condintions, through inversion of a three-dimensional elliptic equation.

The implicit free surface form of the pressure equation described in Marshall et. al [39] is employed. A horizontal Laplacian operator $ \nabla_{h}^2$ provides viscous dissipation. The thermodynamic forcing appears as a sink in the potential temperature, $ \theta $, equation ([*]). This produces a set of equations solved in this configuration as follows:


$\displaystyle \frac{Du}{Dt} - fv +
\frac{1}{\rho}\frac{\partial p^{'}}{\partial...
..._{h}\nabla_{h}u -
\frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}$ $\displaystyle =$ \begin{displaymath}\begin{cases}
0 & \text{(surface)} \\
0 & \text{(interior)}
\end{cases}\end{displaymath} (3.85)
$\displaystyle \frac{Dv}{Dt} + fu +
\frac{1}{\rho}\frac{\partial p^{'}}{\partial...
..._{h}\nabla_{h}v -
\frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}$ $\displaystyle =$ \begin{displaymath}\begin{cases}
0 & \text{(surface)} \\
0 & \text{(interior)}
\end{cases}\end{displaymath} (3.86)
$\displaystyle \frac{Dw}{Dt} + g \frac{\rho^{'}}{\rho} +
\frac{1}{\rho}\frac{\pa...
..._{h}\nabla_{h}w -
\frac{\partial}{\partial z}A_{z}\frac{\partial w}{\partial z}$ $\displaystyle =$ \begin{displaymath}\begin{cases}
0 & \text{(surface)} \\
0 & \text{(interior)}
\end{cases}\end{displaymath} (3.87)
$\displaystyle \frac{\partial u}{\partial x} +
\frac{\partial v}{\partial y} +
\frac{\partial w}{\partial z} +$ $\displaystyle =$ 0 (3.88)
$\displaystyle \frac{D\theta}{Dt} -
\nabla_{h}\cdot K_{h}\nabla_{h}\theta
- \frac{\partial}{\partial z}K_{z}\frac{\partial\theta}{\partial z}$ $\displaystyle =$ \begin{displaymath}\begin{cases}
{\cal F}_\theta & \text{(surface)} \\
0 & \text{(interior)}
\end{cases}\end{displaymath} (3.89)

where $ u=\frac{Dx}{Dt}$, $ v=\frac{Dy}{Dt}$ and $ w=\frac{Dz}{Dt}$ are the components of the flow vector in directions $ x$, $ y$ and $ z$. The pressure is diagnosed through inversion (subject to appropriate boundary conditions) of a 3-D elliptic equation derived from the divergence of the momentum equations and continuity (see section 1.3.6).


next up previous contents
Next: 3.13.3 Discrete numerical configuration Up: 3.13 Surface Driven Convection Previous: 3.13.1 Overview   Contents
mitgcm-support@dev.mitgcm.org
Copyright © 2002 Massachusetts Institute of Technology