Home Contact Us Site Map  
 
       
    next up previous contents
Next: 1.3.6 Finding the pressure Up: 1.3 Continuous equations in Previous: 1.3.4 Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic   Contents

1.3.5 Solution strategy

The method of solution employed in the HPE, QH and NH models is summarized in Figure 1.17. Under all dynamics, a 2-d elliptic equation is first solved to find the surface pressure and the hydrostatic pressure at any level computed from the weight of fluid above. Under HPE and QH dynamics, the horizontal momentum equations are then stepped forward and $ \dot{
r}$ found from continuity. Under NH dynamics a 3-d elliptic equation must be solved for the non-hydrostatic pressure before stepping forward the horizontal momentum equations; $ \dot{
r}$ is found by stepping forward the vertical momentum equation.

Figure 1.17: Basic solution strategy in MITgcm. HPE and QH forms diagnose the vertical velocity, in NH a prognostic equation for the vertical velocity is integrated.
\resizebox{5in}{!}{
\includegraphics{s_overview/figs/solution_strategy.ps}
}

There is no penalty in implementing QH over HPE except, of course, some complication that goes with the inclusion of $ \cos \varphi \ $ Coriolis terms and the relaxation of the shallow atmosphere approximation. But this leads to negligible increase in computation. In NH, in contrast, one additional elliptic equation - a three-dimensional one - must be inverted for $ p_{nh}$ . However the `overhead' of the NH model is essentially negligible in the hydrostatic limit (see detailed discussion in Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the hydrostatic limit, is as computationally economic as the HPEs.


next up previous contents
Next: 1.3.6 Finding the pressure Up: 1.3 Continuous equations in Previous: 1.3.4 Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic   Contents
mitgcm-support@mitgcm.org
Copyright © 2006 Massachusetts Institute of Technology Last update 2011-01-09