C $Header: /u/gcmpack/MITgcm/pkg/diagnostics/diagnostics_out.F,v 1.18 2005/07/13 17:47:21 molod Exp $
C $Name: $
#include "DIAG_OPTIONS.h"
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
CBOP 0
C !ROUTINE: DIAGNOSTICS_OUT
C !INTERFACE:
SUBROUTINE DIAGNOSTICS_OUT(
I listId,
I myIter,
I myTime,
I myThid )
C !DESCRIPTION:
C Write output for diagnostics fields.
C !USES:
IMPLICIT NONE
#include "SIZE.h"
#include "EEPARAMS.h"
#include "PARAMS.h"
#include "GRID.h"
#include "DIAGNOSTICS_SIZE.h"
#include "DIAGNOSTICS.h"
#ifdef ALLOW_FIZHI
#include "fizhi_SIZE.h"
#else
INTEGER Nrphys
PARAMETER (Nrphys=0)
#endif
C !INPUT PARAMETERS:
C listId :: Diagnostics list number being written
C myIter :: current iteration number
C myTime :: current time of simulation (s)
C myThid :: my Thread Id number
_RL myTime
INTEGER listId, myIter, myThid
CEOP
C !LOCAL VARIABLES:
C i,j,k :: loop indices
C md :: field number in the list "listId".
C ndId :: diagnostics Id number (in available diagnostics list)
C mate :: counter mate Id number (in available diagnostics list)
C ip :: diagnostics pointer to storage array
C im :: counter-mate pointer to storage array
INTEGER i, j, k
INTEGER bi, bj
INTEGER md, ndId, ip, im
INTEGER mate, mVec
CHARACTER*8 parms1
CHARACTER*3 mate_index
_RL qtmp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+Nrphys,nSx,nSy)
_RL qtmpsrf(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
_RL qtmp2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+Nrphys,nSx,nSy)
_RL undef, getcon
EXTERNAL
INTEGER ILNBLNK
EXTERNAL
INTEGER ilen
integer nlevsout,nplevs
parameter(nplevs = 16)
_RL plevs1(nplevs)
data plevs1/ 1000.0 _d 2, 925.0 _d 2, 850.0 _d 2, 700.0 _d 2,
. 600.0 _d 2, 500.0 _d 2, 400.0 _d 2, 300.0 _d 2,
. 250.0 _d 2, 200.0 _d 2, 150.0 _d 2, 100.0 _d 2,
. 70.0 _d 2, 50.0 _d 2, 30.0 _d 2, 20.0 _d 2/
_RL plevs2(nplevs)
data plevs2/ 1000.0 _d 2, 950.0 _d 2, 900.0 _d 2, 850.0 _d 2,
. 800.0 _d 2, 750.0 _d 2, 700.0 _d 2, 600.0 _d 2,
. 500.0 _d 2, 400.0 _d 2, 300.0 _d 2, 250.0 _d 2,
. 200.0 _d 2, 150.0 _d 2, 100.0 _d 2, 50.0 _d 2/
_RL qprs(sNx,sNy,nplevs)
_RL qinp(sNx,sNy,Nr+Nrphys)
_RL pkz(sNx,sNy,Nr+Nrphys)
_RL pksrf(sNx,sNy)
_RL p
INTEGER jpoint1,ipoint1
INTEGER jpoint2,ipoint2
_RL kappa
logical foundp
data foundp /.false./
INTEGER ioUnit
CHARACTER*(MAX_LEN_FNAM) fn
CHARACTER*(MAX_LEN_MBUF) suff
CHARACTER*(MAX_LEN_MBUF) msgBuf
LOGICAL glf
#ifdef ALLOW_MNC
INTEGER ii
CHARACTER*(MAX_LEN_FNAM) diag_mnc_bn
CHARACTER*(5) ctmp
INTEGER CW_DIMS, NLEN
PARAMETER ( CW_DIMS = 10 )
PARAMETER ( NLEN = 80 )
INTEGER dim(CW_DIMS), ib(CW_DIMS), ie(CW_DIMS)
CHARACTER*(NLEN) dn(CW_DIMS)
CHARACTER*(NLEN) d_cw_name
CHARACTER*(NLEN) dn_blnk
_RS ztmp(Nr+Nrphys)
#endif /* ALLOW_MNC */
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
ioUnit= standardMessageUnit
undef = getcon('UNDEF')
kappa = getcon('KAPPA')
glf = globalFiles
WRITE(suff,'(I10.10)') myIter
ilen = ILNBLNK(fnames(listId))
WRITE( fn, '(A,A,A)' ) fnames(listId)(1:ilen),'.',suff(1:10)
#ifdef ALLOW_MNC
IF (useMNC .AND. diag_mnc) THEN
DO i = 1,MAX_LEN_FNAM
diag_mnc_bn(i:i) = ' '
ENDDO
DO i = 1,NLEN
dn_blnk(i:i) = ' '
ENDDO
WRITE( diag_mnc_bn, '(A)' ) fnames(listId)(1:ilen)
C Update the record dimension by writing the iteration number
CALL MNC_CW_SET_UDIM(diag_mnc_bn, -1, myThid)
CALL MNC_CW_RL_W_S('D',diag_mnc_bn,0,0,'T',myTime,myThid)
CALL MNC_CW_SET_UDIM(diag_mnc_bn, 0, myThid)
dn(1)(1:NLEN) = dn_blnk(1:NLEN)
WRITE(dn(1),'(a,i6.6)') 'Zmd', nlevels(listId)
dim(1) = nlevels(listId)
ib(1) = 1
ie(1) = nlevels(listId)
CALL MNC_CW_ADD_GNAME('diag_levels', 1,
& dim, dn, ib, ie, myThid)
CALL MNC_CW_ADD_VNAME('diag_levels', 'diag_levels',
& 0,0, myThid)
CALL MNC_CW_ADD_VATTR_TEXT('diag_levels','description',
& 'Idicies of vertical levels within the source arrays',
& myThid)
CALL MNC_CW_RL_W('D',diag_mnc_bn,0,0,
& 'diag_levels', levs(1,listId), myThid)
CALL MNC_CW_DEL_VNAME('diag_levels', myThid)
CALL MNC_CW_DEL_GNAME('diag_levels', myThid)
#ifdef DIAG_MNC_COORD_NEEDSWORK
C This part has been placed in an #ifdef because, as its currently
C written, it will only work with variables defined on a dynamics
C grid. As we start using diagnostics for physics grids, ice
C levels, land levels, etc. the different vertical coordinate
C dimensions will have to be taken into account.
C Now define: Zmdxxxxxx, Zudxxxxxx, Zldxxxxxx
ctmp(1:5) = 'mul '
DO i = 1,3
dn(1)(1:NLEN) = dn_blnk(1:NLEN)
WRITE(dn(1),'(3a,i6.6)') 'Z',ctmp(i:i),'d',nlevels(listId)
CALL MNC_CW_ADD_GNAME(dn(1), 1, dim, dn, ib, ie, myThid)
CALL MNC_CW_ADD_VNAME(dn(1), dn(1), 0,0, myThid)
C The following three ztmp() loops should eventually be modified
C to reflect the fractional nature of levs(j,l) -- they should
C do something like:
C ztmp(j) = rC(INT(FLOOR(levs(j,l))))
C + ( rC(INT(FLOOR(levs(j,l))))
C + rC(INT(CEIL(levs(j,l)))) )
C / ( levs(j,l) - FLOOR(levs(j,l)) )
C for averaged levels.
IF (i .EQ. 1) THEN
DO j = 1,nlevels(listId)
ztmp(j) = rC(NINT(levs(j,listId)))
ENDDO
CALL MNC_CW_ADD_VATTR_TEXT(dn(1),'description',
& 'Dimensional coordinate value at the mid point',
& myThid)
ELSEIF (i .EQ. 2) THEN
DO j = 1,nlevels(listId)
ztmp(j) = rF(NINT(levs(j,listId)) + 1)
ENDDO
CALL MNC_CW_ADD_VATTR_TEXT(dn(1),'description',
& 'Dimensional coordinate value at the upper point',
& myThid)
ELSEIF (i .EQ. 3) THEN
DO j = 1,nlevels(listId)
ztmp(j) = rF(NINT(levs(j,listId)))
ENDDO
CALL MNC_CW_ADD_VATTR_TEXT(dn(1),'description',
& 'Dimensional coordinate value at the lower point',
& myThid)
ENDIF
CALL MNC_CW_RS_W('D',diag_mnc_bn,0,0, dn(1), ztmp, myThid)
CALL MNC_CW_DEL_VNAME(dn(1), myThid)
CALL MNC_CW_DEL_GNAME(dn(1), myThid)
ENDDO
#endif /* DIAG_MNC_COORD_NEEDSWORK */
ENDIF
#endif /* ALLOW_MNC */
DO md = 1,nfields(listId)
ndId = jdiag(md,listId)
parms1 = gdiag(ndId)(1:8)
IF ( idiag(md,listId).NE.0 .AND. parms1(5:5).NE.'D' ) THEN
C-- Start processing 1 Fld :
ip = ABS(idiag(md,listId))
im = mdiag(md,listId)
IF ( ndiag(ip,1,1).EQ.0 ) THEN
C- Empty diagnostics case :
_BEGIN_MASTER( myThid )
WRITE(msgBuf,'(A,I10)')
& '- WARNING - from DIAGNOSTICS_OUT at iter=', myIter
CALL PRINT_MESSAGE( msgBuf, errorMessageUnit,
& SQUEEZE_RIGHT, myThid)
WRITE(msgBuf,'(A,I4,3A,I3,2A)')
& '- WARNING - diag.#',ndId, ' : ',flds(md,listId),
& ' (#',md,' ) in outp.Stream: ',fnames(listId)
CALL PRINT_MESSAGE( msgBuf, errorMessageUnit,
& SQUEEZE_RIGHT, myThid)
WRITE(msgBuf,'(A,I2,A)')
& '- WARNING - has not been filled (ndiag=',
& ndiag(ip,1,1), ' )'
CALL PRINT_MESSAGE( msgBuf, errorMessageUnit,
& SQUEEZE_RIGHT, myThid)
WRITE(msgBuf,'(A)')
& 'WARNING DIAGNOSTICS_OUT => write ZEROS instead'
CALL PRINT_MESSAGE( msgBuf, errorMessageUnit,
& SQUEEZE_RIGHT, myThid)
_END_MASTER( myThid )
DO bj = myByLo(myThid), myByHi(myThid)
DO bi = myBxLo(myThid), myBxHi(myThid)
DO k = 1,nlevels(listId)
DO j = 1-OLy,sNy+OLy
DO i = 1-OLx,sNx+OLx
qtmp1(i,j,k,bi,bj) = 0. _d 0
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
ELSE
C- diagnostics is not empty :
IF ( myThid.EQ.1 ) WRITE(ioUnit,'(A,I3,3A,I8,2A)')
& ' Computing Diagnostic # ', ndId, ' ', cdiag(ndId),
& ' Counter:',ndiag(ip,1,1),' Parms: ',gdiag(ndId)
IF ( parms1(5:5).EQ.'C' ) THEN
C Check for Mate of a Counter Diagnostic
C --------------------------------------
mate_index = parms1(6:8)
READ (mate_index,'(I3)') mate
IF ( myThid.EQ.1 ) WRITE(ioUnit,'(3A,I3,2A)')
& ' use Counter Mate for ', cdiag(ndId),
& ' Diagnostic # ',mate, ' ', cdiag(mate)
ELSE
mate = 0
C Check for Mate of a Vector Diagnostic
C -------------------------------------
IF ( parms1(1:1).EQ.'U' .OR. parms1(1:1).EQ.'V' ) THEN
mate_index = parms1(6:8)
READ (mate_index,'(I3)') mVec
IF ( im.GT.0 .AND. ndiag(MAX(1,im),1,1).GT.0 ) THEN
IF ( myThid.EQ.1 ) WRITE(ioUnit,'(3A,I3,3A)')
& ' Vector Mate for ', cdiag(ndId),
& ' Diagnostic # ',mVec, ' ', cdiag(mVec),
& ' exists '
ELSE
IF ( myThid.EQ.1 ) WRITE(ioUnit,'(3A,I3,3A)')
& ' Vector Mate for ', cdiag(ndId),
& ' Diagnostic # ',mVec, ' ', cdiag(mVec),
& ' not enabled'
ENDIF
ENDIF
ENDIF
DO bj = myByLo(myThid), myByHi(myThid)
DO bi = myBxLo(myThid), myBxHi(myThid)
DO k = 1,nlevels(listId)
CALL GETDIAG(
I levs(k,listId),undef,
O qtmp1(1-OLx,1-OLy,k,bi,bj),
I ndId,mate,ip,im,bi,bj,myThid)
ENDDO
ENDDO
ENDDO
C- end of empty diag / not empty block
ENDIF
nlevsout = nlevels(listId)
C-----------------------------------------------------------------------
C Check to see if we need to interpolate before output
C-----------------------------------------------------------------------
C (we are still inside field exist if sequence and field do loop)
C
if(fflags(listId)(2:2).eq.'P') then
c If nonlinear free surf is active, need averaged pressures
#ifdef NONLIN_FRSURF
if(select_rStar.GT.0)then
call DIAGNOSTICS_GET_POINTERS('RSURF ',ipoint1,jpoint1,
. myThid)
call DIAGNOSTICS_GET_POINTERS('PRESSURE',ipoint2,jpoint2,
. myThid)
C if fizhi is being used, may need to get physics grid pressures
#ifdef ALLOW_FIZHI
if(gdiag(ndId)(10:10) .EQ. 'L')then
call DIAGNOSTICS_GET_POINTERS('FIZPRES ',ipoint2,jpoint2,
. myThid)
endif
#endif
if( jpoint1.ne.0 .and. jpoint2.ne.0) foundp = .true.
if(.not. foundp) then
WRITE(msgBuf,'(3A)') 'DIAGNOSTICS_OUT: ',
. ' Have asked for pressure interpolation but have not ',
. ' Activated surface and 3D pressure diagnostic, ',
. ' RSURF and PRESSURE'
CALL PRINT_ERROR( msgBuf , myThid )
STOP 'ABNORMAL END: S/R DIAGNOSTICS_OUT'
endif
DO bj = myByLo(myThid), myByHi(myThid)
DO bi = myBxLo(myThid), myBxHi(myThid)
call GETDIAG(1,undef,qtmpsrf(1-OLx,1-OLy,bi,bj),
. jpoint1,0,ipoint1,0,bi,bj,myThid)
ENDDO
ENDDO
DO bj = myByLo(myThid), myByHi(myThid)
DO bi = myBxLo(myThid), myBxHi(myThid)
DO k = 1,nlevels(listId)
call GETDIAG(levs(k,listId),undef,
. qtmp2(1-OLx,1-OLy,k,bi,bj),jpoint2,0,ipoint2,0,
. bi,bj,myThid)
ENDDO
ENDDO
ENDDO
endif
#else
C If nonlinear free surf is off, get pressures from rC and rF arrays
DO bj = myByLo(myThid), myByHi(myThid)
DO bi = myBxLo(myThid), myBxHi(myThid)
DO j = 1-OLy,sNy+OLy
DO i = 1-OLx,sNx+OLx
qtmpsrf(i,j,bi,bj) = rF(1)
ENDDO
ENDDO
DO j = 1-OLy,sNy+OLy
DO i = 1-OLx,sNx+OLx
DO k = 1,nlevels(listId)
qtmp2(i,j,k,bi,bj) = rC(k)
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
#endif
C Load p to the kappa into a temporary array
nlevsout = nplevs
DO bj = myByLo(myThid), myByHi(myThid)
DO bi = myBxLo(myThid), myBxHi(myThid)
DO j = 1,sNy
DO i = 1,sNx
pksrf(i,j) = qtmpsrf(i,j,bi,bj) ** kappa
DO k = 1,nlevels(listId)
if(gdiag(ndId)(10:10).eq.'R') then
if(hFacC(i,j,nlevels(listId)-k+1,bi,bj).ne.0.) then
qinp(i,j,k) = qtmp1(i,j,nlevels(listId)-k+1,bi,bj)
else
qinp(i,j,k) = undef
endif
pkz(i,j,k) = qtmp2(i,j,nlevels(listId)-k+1,bi,bj)**kappa
elseif(gdiag(ndId)(10:10).eq.'L') then
qinp(i,j,k) = qtmp1(i,j,k,bi,bj)
pkz(i,j,k) = qtmp2(i,j,k,bi,bj)**kappa
endif
ENDDO
ENDDO
ENDDO
DO k = 1,nplevs
if(fflags(listId)(3:3).eq.'1') then
p = plevs1(k)
elseif(fflags(listId)(3:3).eq.'2')then
p = plevs2(k)
endif
call PRESTOPRES(qprs(1,1,k),qinp,pkz,pksrf,0.,p,sNx,sNy,
. nlevels(listId) )
ENDDO
DO j = 1,sNy
DO i = 1,sNx
DO k = 1,nlevsout
qtmp1(i,j,k,bi,bj) = qprs(i,j,k)
if(qtmp1(i,j,k,bi,bj).eq.undef) qtmp1(i,j,k,bi,bj) = 0.
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
endif
#ifdef ALLOW_MDSIO
C Prepare for mdsio optionality
IF (diag_mdsio) THEN
IF (fflags(listId)(1:1) .EQ. ' ') THEN
C This is the old default behavior
CALL MDSWRITEFIELD_NEW(fn,writeBinaryPrec,glf,'RL',
& Nr+Nrphys,nlevsout,qtmp1,md,myIter,myThid)
ELSEIF (fflags(listId)(1:1) .EQ. 'R') THEN
C Force it to be 32-bit precision
CALL MDSWRITEFIELD_NEW(fn,precFloat32,glf,'RL',
& Nr+Nrphys,nlevsout,qtmp1,md,myIter,myThid)
ELSEIF (fflags(listId)(1:1) .EQ. 'D') THEN
C Force it to be 64-bit precision
CALL MDSWRITEFIELD_NEW(fn,precFloat64,glf,'RL',
& Nr+Nrphys,nlevsout,qtmp1,md,myIter,myThid)
ENDIF
ENDIF
#endif /* ALLOW_MDSIO */
#ifdef ALLOW_MNC
IF (useMNC .AND. diag_mnc) THEN
_BEGIN_MASTER( myThid )
DO ii = 1,CW_DIMS
d_cw_name(1:NLEN) = dn_blnk(1:NLEN)
dn(ii)(1:NLEN) = dn_blnk(1:NLEN)
ENDDO
C Note that the "d_cw_name" variable is a hack that hides a
C subtlety within MNC. Basically, each MNC-wrapped file is
C caching its own concept of what each "grid name" (that is, a
C dimension group name) means. So one cannot re-use the same
C "grid" name for different collections of dimensions within a
C given file. By appending the "ndId" values to each name, we
C guarantee uniqueness within each MNC-produced file.
WRITE(d_cw_name,'(a,i6.6)') 'd_cw_',ndId
C XY dimensions
dim(1) = sNx + 2*OLx
dim(2) = sNy + 2*OLy
ib(1) = OLx + 1
ib(2) = OLy + 1
IF (gdiag(ndId)(2:2) .EQ. 'M') THEN
dn(1)(1:2) = 'X'
ie(1) = OLx + sNx
dn(2)(1:2) = 'Y'
ie(2) = OLy + sNy
ELSEIF (gdiag(ndId)(2:2) .EQ. 'U') THEN
dn(1)(1:3) = 'Xp1'
ie(1) = OLx + sNx + 1
dn(2)(1:2) = 'Y'
ie(2) = OLy + sNy
ELSEIF (gdiag(ndId)(2:2) .EQ. 'V') THEN
dn(1)(1:2) = 'X'
ie(1) = OLx + sNx
dn(2)(1:3) = 'Yp1'
ie(2) = OLy + sNy + 1
ELSEIF (gdiag(ndId)(2:2) .EQ. 'Z') THEN
dn(1)(1:3) = 'Xp1'
ie(1) = OLx + sNx + 1
dn(2)(1:3) = 'Yp1'
ie(2) = OLy + sNy + 1
ENDIF
C Z is special since it varies
WRITE(dn(3),'(a,i6.6)') 'Zd', nlevels(listId)
IF ( (gdiag(ndId)(10:10) .EQ. 'R')
& .AND. (gdiag(ndId)(9:9) .EQ. 'M') ) THEN
WRITE(dn(3),'(a,i6.6)') 'Zmd', nlevels(listId)
ENDIF
IF ( (gdiag(ndId)(10:10) .EQ. 'R')
& .AND. (gdiag(ndId)(9:9) .EQ. 'L') ) THEN
WRITE(dn(3),'(a,i6.6)') 'Zld', nlevels(listId)
ENDIF
IF ( (gdiag(ndId)(10:10) .EQ. 'R')
& .AND. (gdiag(ndId)(9:9) .EQ. 'U') ) THEN
WRITE(dn(3),'(a,i6.6)') 'Zud', nlevels(listId)
ENDIF
dim(3) = Nr+Nrphys
ib(3) = 1
ie(3) = nlevels(listId)
C Time dimension
dn(4)(1:1) = 'T'
dim(4) = -1
ib(4) = 1
ie(4) = 1
CALL MNC_CW_ADD_GNAME(d_cw_name, 4,
& dim, dn, ib, ie, myThid)
CALL MNC_CW_ADD_VNAME(cdiag(ndId), d_cw_name,
& 4,5, myThid)
CALL MNC_CW_ADD_VATTR_TEXT(cdiag(ndId),'description',
& tdiag(ndId),myThid)
CALL MNC_CW_ADD_VATTR_TEXT(cdiag(ndId),'units',
& udiag(ndId),myThid)
IF ((fflags(listId)(1:1) .EQ. ' ')
& .OR. (fflags(listId)(1:1) .EQ. 'R')) THEN
CALL MNC_CW_RL_W('R',diag_mnc_bn,0,0,
& cdiag(ndId), qtmp1, myThid)
ELSEIF (fflags(listId)(1:1) .EQ. 'D') THEN
CALL MNC_CW_RL_W('D',diag_mnc_bn,0,0,
& cdiag(ndId), qtmp1, myThid)
ENDIF
CALL MNC_CW_DEL_VNAME(cdiag(ndId), myThid)
CALL MNC_CW_DEL_GNAME(d_cw_name, myThid)
_END_MASTER( myThid )
ENDIF
#endif /* ALLOW_MNC */
C-- end of Processing Fld # md
ENDIF
ENDDO
RETURN
END
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|