Home Contact Us Site Map  
 
       
    next up previous contents
Next: 3.10.3 Experiment Configuration Up: 3.10 Global Ocean MITgcm Previous: 3.10.1 Overview   Contents

Subsections


3.10.2 Discrete Numerical Configuration

The model is configured in hydrostatic form. The domain is discretised with a uniform grid spacing in latitude and longitude on the sphere $ \Delta \phi=\Delta \lambda=4^{\circ}$, so that there are ninety grid cells in the zonal and forty in the meridional direction. The internal model coordinate variables $ x$ and $ y$ are initialized according to

$\displaystyle x=r\cos(\phi),~\Delta x$ $\displaystyle =$ $\displaystyle r\cos(\Delta \phi)$ (3.34)
$\displaystyle y=r\lambda,~\Delta y$ $\displaystyle =$ $\displaystyle r\Delta \lambda$ (3.35)

Arctic polar regions are not included in this experiment. Meridionally the model extends from $ 80^{\circ}{\rm S}$ to $ 80^{\circ}{\rm N}$. Vertically the model is configured with twenty layers with the following thicknesses $ \Delta z_{1} = 50\,{\rm m},\,
\Delta z_{2} = 50\,{\rm m},\,
\Delta z_{3} = 55\,{\rm m},\,
\Delta z_{4} = 60\,{\rm m},\,
\Delta z_{5} = 65\,{\rm m},\,
$ $ \Delta z_{6}~=~70\,{\rm m},\,
\Delta z_{7}~=~80\,{\rm m},\,
\Delta z_{8}~=95\,{\rm m},\,
\Delta z_{9}=120\,{\rm m},\,
\Delta z_{10}=155\,{\rm m},\,
$ $ \Delta z_{11}=200\,{\rm m},\,
\Delta z_{12}=260\,{\rm m},\,
\Delta z_{13}=320\,{\rm m},\,
\Delta z_{14}=400\,{\rm m},\,
\Delta z_{15}=480\,{\rm m},\,
$ $ \Delta z_{16}=570\,{\rm m},\,
\Delta z_{17}=655\,{\rm m},\,
\Delta z_{18}=725\,{\rm m},\,
\Delta z_{19}=775\,{\rm m},\,
\Delta z_{20}=815\,{\rm m}
$ (here the numeric subscript indicates the model level index number, $ {\tt k}$) to give a total depth, $ H$, of $ -5450{\rm m}$. The implicit free surface form of the pressure equation described in Marshall et. al [39] is employed. A Laplacian operator, $ \nabla^2$, provides viscous dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.

Wind-stress forcing is added to the momentum equations in (3.36) for both the zonal flow, $ u$ and the meridional flow $ v$, according to equations (3.30) and (3.31). Thermodynamic forcing inputs are added to the equations in (3.36) for potential temperature, $ \theta $, and salinity, $ S$, according to equations (3.32) and (3.33). This produces a set of equations solved in this configuration as follows:


$\displaystyle \frac{Du}{Dt} - fv +
\frac{1}{\rho}\frac{\partial p^{'}}{\partial...
..._{h}\nabla_{h}u -
\frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}$ $\displaystyle =$ \begin{displaymath}\begin{cases}
{\cal F}_u & \text{(surface)} \\
0 & \text{(interior)}
\end{cases}\end{displaymath} (3.36)
$\displaystyle \frac{Dv}{Dt} + fu +
\frac{1}{\rho}\frac{\partial p^{'}}{\partial...
..._{h}\nabla_{h}v -
\frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}$ $\displaystyle =$ \begin{displaymath}\begin{cases}
{\cal F}_v & \text{(surface)} \\
0 & \text{(interior)}
\end{cases}\end{displaymath} (3.37)
$\displaystyle \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}$ $\displaystyle =$ 0 (3.38)
$\displaystyle \frac{D\theta}{Dt} -
\nabla_{h}\cdot K_{h}\nabla_{h}\theta
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}$ $\displaystyle =$ \begin{displaymath}\begin{cases}
{\cal F}_\theta & \text{(surface)} \\
0 & \text{(interior)}
\end{cases}\end{displaymath} (3.39)
$\displaystyle \frac{D s}{Dt} -
\nabla_{h}\cdot K_{h}\nabla_{h}s
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}$ $\displaystyle =$ \begin{displaymath}\begin{cases}
{\cal F}_s & \text{(surface)} \\
0 & \text{(interior)}
\end{cases}\end{displaymath} (3.40)
$\displaystyle g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz$ $\displaystyle =$ $\displaystyle p^{'}$ (3.41)

where $ u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and $ v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$ are the zonal and meridional components of the flow vector, $ \vec{u}$, on the sphere. As described in MITgcm Numerical Solution Procedure 2, the time evolution of potential temperature, $ \theta $, equation is solved prognostically. The total pressure, $ p$, is diagnosed by summing pressure due to surface elevation $ \eta $ and the hydrostatic pressure.


3.10.2.1 Numerical Stability Criteria

The Laplacian dissipation coefficient, $ A_{h}$, is set to $ 5 \times 10^5 m s^{-1}$. This value is chosen to yield a Munk layer width [1],

    $\displaystyle M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}$ (3.42)

of $ \approx 600$km. This is greater than the model resolution in low-latitudes, $ \Delta x \approx 400{\rm km}$, ensuring that the frictional boundary layer is adequately resolved.

The model is stepped forward with a time step $ \delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and $ \delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability parameter to the horizontal Laplacian friction [1]

    $\displaystyle S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}$ (3.43)

evaluates to 0.16 at a latitude of $ \phi=80^{\circ}$, which is below the 0.3 upper limit for stability. The zonal grid spacing $ \Delta x$ is smallest at $ \phi=80^{\circ}$ where $ \Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.

The vertical dissipation coefficient, $ A_{z}$, is set to $ 1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit

$\displaystyle S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}$     (3.44)

evaluates to $ 0.015$ for the smallest model level spacing ( $ \Delta z_{1}=50{\rm m}$) which is again well below the upper stability limit.

The values of the horizontal ($ K_{h}\ $) and vertical ($ K_{z}$) diffusion coefficients for both temperature and salinity are set to $ 1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$ and $ 3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit related to $ K_{h}\ $ will be at $ \phi=80^{\circ}$ where $ \Delta x \approx 77 {\rm km}$. Here the stability parameter

$\displaystyle S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}$     (3.45)

evaluates to $ 0.07$, well below the stability limit of $ S_{l} \approx 0.5$. The stability parameter related to $ K_{z}$
$\displaystyle S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}$     (3.46)

evaluates to $ 0.005$ for $ \min(\Delta z)=50{\rm m}$, well below the stability limit of $ S_{l} \approx 0.5$.

The numerical stability for inertial oscillations [1]


$\displaystyle S_{i} = f^{2} {\delta t_v}^2$     (3.47)

evaluates to $ 0.24$ for $ f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to the $ S_{i} < 1$ upper limit for stability.

The advective CFL [1] for a extreme maximum horizontal flow speed of $ \vert \vec{u} \vert = 2 ms^{-1}$


$\displaystyle S_{a} = \frac{\vert \vec{u} \vert \delta t_{v}}{ \Delta x}$     (3.48)

evaluates to $ 6 \times 10^{-2}$. This is well below the stability limit of 0.5.

The stability parameter for internal gravity waves propagating with a maximum speed of $ c_{g}=10~{\rm ms}^{-1}$ [1]


$\displaystyle S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}$     (3.49)

evaluates to $ 3 \times 10^{-1}$. This is close to the linear stability limit of 0.5.


next up previous contents
Next: 3.10.3 Experiment Configuration Up: 3.10 Global Ocean MITgcm Previous: 3.10.1 Overview   Contents
mitgcm-support@dev.mitgcm.org
Copyright © 2002 Massachusetts Institute of Technology