Home Contact Us Site Map  
 
       
    next up previous contents
Next: 3.14.4 Experiment Configuration Up: 3.14 Held-Suarez Atmosphere MITgcm Previous: 3.14.2 Forcing   Contents

Subsections

3.14.3 Set-up description

The model is configured in hydrostatic form, using non-boussinesq $ p^*$ coordinate. The vertical resolution is uniform, $ \Delta p^* = 50.10^2 Pa$ , with 20 levels, from $ p^*=10^5 Pa$ to 0 at the top. The domain is discretised using C32 cube-sphere grid [Adcroft et al., 2004a] that cover the whole sphere with a relatively uniform grid-spacing. The resolution at the equator or along the Greenwitch meridian is similar to the $ 128 \times 64$ equaly spaced longitude-latitude grid, but requires $ 25\%$ less grid points. Grid spacing and grid-point location are not computed by the model but read from files.

The vector-invariant form of the momentum equation (see section 2.15) is used so that no explicit metrics are necessary.

Applying the vector-invariant discretization to the atmospheric equations 1.59, and adding the forcing term (3.61, 3.62) on the right-hand-side, leads to the set of equations that are solved in this configuration:


$\displaystyle \frac{\partial \vec{\mathbf{v}}_h}{\partial t}
+(f + \zeta)\hat{\mathbf{k}} \times \vec{\mathbf{v}}_h
+\mathbf{\nabla }_{p} ($KE$\displaystyle )
+ \omega \frac{\partial \vec{\mathbf{v}}_h }{\partial p}
+\mathbf{\nabla }_p \Phi ^{\prime }$ $\displaystyle =$ $\displaystyle -k_\mathbf{v}\vec{\mathbf{v}}_h$ (3.65)
$\displaystyle \frac{\partial \Phi ^{\prime }}{\partial p}
+\frac{\partial \Pi }{\partial p}\theta ^{\prime }$ $\displaystyle =$ 0 (3.66)
$\displaystyle \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_h+\frac{\partial \omega }{
\partial p}$ $\displaystyle =$ 0 (3.67)
$\displaystyle \frac{\partial \theta }{\partial t}
+ \mathbf{\nabla }_{p}\cdot (\theta \vec{\mathbf{v}}_h)
+ \frac{\partial (\theta \omega)}{\partial p}$ $\displaystyle =$ $\displaystyle -k_{\theta}[\theta-\theta_{eq}]$ (3.68)

where $ \vec{\mathbf{v}}_h$ and $ \omega =\frac{Dp }{Dt}$ are the horizontal velocity vector and the vertical velocity in pressure coordinate, $ \zeta$ is the relative vorticity and $ f$ the Coriolis parameter, $ \hat{\mathbf{k}}$ is the vertical unity vector, KE is the kinetic energy, $ \Phi$ is the geopotential and $ \Pi$ the Exner function ( $ \Pi = C_p (p/p_c)^\kappa ~{\rm with}~ p_c = 10^5 Pa$ ). Variables marked with ' corresponds to anomaly from the resting, uniformly stratified state.

As described in MITgcm Numerical Solution Procedure 2, the continuity equation is integrated vertically, to give a prognostic equation for the surface pressure $ p_s$ :

$\displaystyle \frac{\partial p_s}{\partial t} + \nabla_{h}\cdot \int_{0}^{p_s} \vec{\mathbf{v}}_h dp = 0$ (3.69)

The implicit free surface form of the pressure equation described in Marshall et al. [1997b] is employed to solve for $ p_s$ ; Integrating vertically the hydrostatic balance gives the geopotential $ \Phi'$ and allow to step forward the momentum equation 3.65. The potential temperature, $ \theta $ , is stepped forward using the new velocity field (staggered time-step, section 2.8).

3.14.3.1 Numerical Stability Criteria

The numerical stability for inertial oscillations Adcroft [1995]


$\displaystyle S_{i} = f^{2} {\Delta t}^2$     (3.70)

evaluates to $ 4.\times10^{-3}$ at the poles, for $ f=2\Omega\sin(\pi / 2) =1.45\times10^{-4}~{\rm s}^{-1}$ , which is well below the $ S_{i} < 1$ upper limit for stability.

The advective CFL Adcroft [1995] for a extreme maximum horizontal flow speed of $ \vert \vec{u} \vert = 90. {\rm m/s}$   and the smallest horizontal grid spacing $ \Delta x = 1.1\times10^5 {\rm m}$  :


$\displaystyle S_{a} = \frac{\vert \vec{u} \vert \Delta t}{ \Delta x}$     (3.71)

evaluates to $ 0.37$ , which is close to the stability limit of 0.5.

The stability parameter for internal gravity waves propagating with a maximum speed of $ c_{g}=100~{\rm m/s}$ Adcroft [1995]


$\displaystyle S_{c} = \frac{c_{g} \Delta t}{ \Delta x}$     (3.72)

evaluates to $ 4 \times 10^{-1}$ . This is close to the linear stability limit of 0.5.


next up previous contents
Next: 3.14.4 Experiment Configuration Up: 3.14 Held-Suarez Atmosphere MITgcm Previous: 3.14.2 Forcing   Contents
mitgcm-support@mitgcm.org
Copyright © 2006 Massachusetts Institute of Technology Last update 2018-01-23