Phytoplankton Diversity versus Productivity in the Ocean

Website Mailing List

Phytoplankton Diversity versus Productivity in the Ocean

In new work published in Nature Communications in July, an international team of scientists from the Massachusetts Institute of Technology and the Institute of Marine Sciences of Barcelona, Spain in collaboration with the National Centre for Scientific Research, France have been using MITgcm to study the balance between phytoplankton diversity and productivity.


Modeling Nordic Seas

Modeling the Denmark Strait circulation using MITgcmThis month we look at work by Tom Haine, Professor of Physical Oceanography at Johns Hopkins University who is using MITgcm to model high-frequency fluctuations in the flow through the Denmark Strait…


Tidal Mixing Over Rough Topography

Snapshot of wave zonal velocity (ms-1) deviation from the barotropic tide in the control simulation. Work by Maxim Nikurshin and Sonya Legg at GFDL using a 2d version of MITgcm to explore radiation and dissipation of the internal tides generated through tidal mixing over rough topography…


Sea Ice

Figure 1. Arctic and Antarctic results from an eddy-permitting, MITgcm, global ocean and sea-ice simulation: Sea ice thickness distribution (color, in meters) averaged over the years 1992-2002. The ice-edge (estimated as the 15% isoline of ice concentration) retrieved from passive microwave satellite data is shown as a white contour for comparison. The top row shows the results for the Arctic Ocean and the bottom row for the Antarctic Oceans; the left column shows distributions for March and the right column for September.Work by Martin Losch of the Alfred-Wegener-Institute, Bremerhaven, Germany, Jean Michel Campin, Patrick Heimbach, Chris Hill (at MIT) and Dimitris Menemenlis (JPL) extending the reach of the MITgcm in to the Polar oceans, with the development of a dynamic-thermodynamic sea-ice model and its adjoint…


PRM

Figure 1. Temperature sections after 60 hours from (top left) the fully resolved model, (bottom left) the multi-scale simulation and (bottom right) the balanced model with a simple convective adjustment algorithm.Work by Jean-Michel Campin, Chris Hill, Helen Jones and John Marshall at MIT using the MITgcm to exploit a multi scale superparameterization approach to increase efficiency in modeling oceanic deep convection (ODC)…